
水道用水供給事業

1 水道施設能力と送水量の推移図

(万m³/日)

年度

- 2 -

2 財務

	(1)	経営状	、況表(税抜)					()	単位 : 千円)
\mathbb{N}		区分	**	総費用	利益又は損失	その他未処分		繰越利益剰余	有収水量
年			総 収 益 (A)	総 費 用 (B)	(\triangle)	利益剰余金	剰余金処分額	金又は欠損金	有收水重 (千m ³)
度	事業名		</td <td></td> <td>$(\mathbf{A}) - (\mathbf{B})$</td> <td>変動額</td> <td></td> <td>(\triangle)</td> <td>(1 m)</td>		$(\mathbf{A}) - (\mathbf{B})$	変動額		(\triangle)	(1 m)
昭和	広	_	16, 595, 655	13, 154, 499				5, 849, 677	376, 653
60	広		4, 927, 531	9, 428, 776	\triangle 4, 501, 245			\triangle 8, 546, 373	62,650
		計	21, 523, 186	22, 583, 275	△ 1,060,089			\triangle 2, 696, 696	439, 303
	広	<u> </u>	17, 595, 602	15, 173, 219	2, 422, 383			8, 272, 060	395, 117
61			5, 348, 886	10, 371, 553	△ 5,022,667			\triangle 13, 569, 040	68,144
		計	22, 944, 488	25, 544, 772	△ 2, 600, 284			\triangle 5, 296, 980	463, 261
	広		16, 957, 685	15, 072, 662	1, 885, 023			10, 157, 083	385, 749
62			5, 293, 298	10, 353, 360				riangle 18, 629, 102	67, 284
		計	22, 250, 983	25, 426, 022				△ 8, 472, 019	453, 033
	広		20, 872, 685	19, 133, 407				11, 896, 361	418, 504
63	広		5, 940, 627	8, 282, 611	\triangle 2, 341, 984			\triangle 20, 971, 086	73, 252
		計	26, 813, 312	27, 416, 018	△ 602,706			△ 9,074,725	491,756
平成	広	_	22, 985, 347	20, 930, 460				13, 951, 248	445, 846
平成 元	広	$\overrightarrow{}$	6, 883, 357	8, 512, 118				\triangle 22, 599, 847	82, 574
		計	29, 868, 704	29, 442, 578	426, 126			\triangle 8, 648, 599	528, 420
	広		23, 960, 127	24, 820, 842	△ 860,715			13, 090, 533	460, 833
2	広		8, 408, 561	9, 295, 672	△ 887,111			\triangle 23, 486, 958	92, 830
		計	32, 368, 688	34, 116, 514	△ 1,747,826			△ 10, 396, 425	553, 663
3			34, 429, 348	38, 159, 201	△ 3, 729, 853			△ 14, 126, 278	583, 240
4			41, 848, 280	37, 603, 398	4, 244, 882			△ 9, 881, 396	610, 163
5			43, 368, 495	37, 978, 990	5, 389, 505			\triangle 4, 491, 891	636, 704
6			43, 174, 016	37, 804, 882	5, 369, 134		870,000	7,243	629, 832
7			42, 856, 981	37, 775, 554	5,081,427		2, 580, 000	2, 508, 670	628, 915
8			43, 220, 243	37, 240, 299	5, 979, 944		4,030,000	4, 458, 614	632, 861
9			42, 446, 721	40, 936, 558	1, 510, 163		4, 810, 000	1, 158, 777	662,049
10			42, 548, 051	40, 707, 095	1, 840, 956		520,000	2, 479, 733	665, 939
11			45, 012, 522	42, 947, 712	2,064,810		1, 330, 000	3, 214, 543	672, 502
12			45, 353, 015	43, 412, 527	1, 940, 488		5, 149, 000	6,031	677, 801
13			45, 137, 130	43,081,717	2, 055, 413		1, 530, 000	531, 444	678, 660
14			44, 444, 793	42, 110, 881	2, 333, 912		2, 330, 000	535, 356	677, 396
15			43, 887, 807	42, 213, 080	1,674,727		2, 170, 000	40,083	671,481
16			43, 579, 308	41, 324, 033	2, 255, 275		120,000	2, 175, 358	667, 739
17			42, 951, 815	41,095,306	1,856,509		1,900,000	2, 131, 867	671, 529
18			42, 632, 269	41,000,140	1, 632, 129		1,600,000	2, 163, 996	669, 491
19			42, 256, 182				2,000,000	2, 195, 229	663, 925
20			42, 572, 461		1, 189, 369		1, 100, 000	2, 284, 598	661,850
21			41, 549, 986	39, 885, 249	1,664,737		1,660,000	2, 289, 335	655, 420
22			41, 363, 201	39, 194, 766	2, 168, 435		2, 160, 000	2, 297, 771	650, 469
23			41,058,220	38, 411, 275	2,646,945		4, 944, 716	0	649, 757
24			41, 034, 891	38,009,958	3, 024, 933		2,857,147	167, 786	645,690
25			41,664,035	37, 896, 711	3, 767, 324	04.010.015	3, 935, 109	0	638,066
26			46,063,626	41, 370, 658	4,692,968	34, 642, 649	39, 335, 617	0	637, 471
27			45, 571, 142	40, 845, 333	4, 725, 809	4, 692, 968	9, 418, 777	0	635, 238
28			44, 769, 994	40, 505, 214	4, 264, 780	4, 725, 809	8,990,589	0	630, 293
29			44, 292, 586	40,033,128	4, 259, 458	4, 264, 780	8, 524, 237	0	629,836
30 金毛			44, 357, 279	41, 276, 120	3, 081, 159	4, 259, 458	7, 340, 616	0	632, 620
令和 元			44, 403, 227	41, 521, 765	2, 881, 462	3,081,159	5, 962, 621	0	637, 798
2			49, 879, 489	51, 742, 097	△ 1,862,608	2, 881, 462	1, 018, 854	0	635,058

注 その他未処分利益剰余金変動額は、建設改良積立金、減債積立金の使用により増加した未処分利益剰余金 を示す。

(2) 収益的収支内訳表(税抜)

					× (1)6.	年	度		R 2	
項	目					X	分	金額(千円)	構成比(%)	前年度比(%)
	総	給		水	収		益	39, 233, 997	78.7	99.6
		他	슻	計	補	助	金	408, 167	0.8	83.7
		受	託	工	事	収	益	38, 685		7,098.2
	収	長	期	前 受	金	戻	入	5, 106, 252		115.7
		そ		T)			他	73, 615		95.4
		特		別	利		益	5, 018, 774	10.1	25, 829. 2
	益		計	(A)				49, 879, 489	100.0	112.3
	総		維	人	件		費	(276)		
			持					2, 308, 989	4.5	106.2
				動	力		費	2, 800, 392	5.4	87.0
			管	薬			費	1, 192, 436	2.3	102.6
			理	修	繕		費	3, 053, 608	5.9	119.4
				その	り 他	費	用	7, 115, 162	13.8	95.8
			費	/				16, 470, 586	31.8	99.6
	費	受	託			事	費	38, 930	0.1	7,101.1
		減	価	償		却	費	22, 255, 384	43.0	104.0
		資	産			耗	費	543, 919		252.2
		支		払	利		息	2, 940, 839	5.7	93.5
		繰	延	勘	定	償	却	0	0.0	—
		そ		σ			他	3, 194	0.0	546.6
		特		別	損		失	9, 489, 244	18.3	4,289.0
	用			計	(]	B)		51, 742, 097	100.0	124.6
利	益又り	よ 拊	員失(\triangle)	(A)	- (]	Β)	△ 1, 862, 608	-	▲ 164.6
繰						0	-	0.0		
有収	有収(検針) 水量(千m ³)						635, 058		99.6	

注:人件費の()書は、職員数を示す。また、R2年度から会計年度任用職員を含む。 四捨五入の関係で合計が一致しない場合がある。

(3) 資本的収支内訳表(税込)

	(3)		R 2	Ī
項	目	区分	金額 (千円)	構成比(%)
	資	企業債	2,220,000	35.5
		国 庫 補助 金	921, 363	14.7
	本	他会計出資金	2, 955, 882	47.3
		他会計補助金	149, 131	2.4
	的	長期借入金	0	0.0
	ЦĴ	そ の 他	2,342	0.0
			6,248,718	100.0
	収	(1) 翌年度支出財源充当額		
		(2) 前年度未収企業債		
	入	純計 a - { (1) + (2) } (b)	6,248,718	_
	資	建設改良費	10, 708, 109	41.5
	本	ア 建設事業費	5, 277, 162	20.5
	4	イ 業務設備整備費	5, 430, 947	21.1
	的	企業債償還金	9,610,482	37.3
		機構負担年賦金	5, 108, 693	19.8
	支	長期借入金償還金	192,000	0.7
		そ の 他	172,980	0.7
	出	計 (c)	25, 792, 264	100.0
収入		こ不足する額 b-c (d)	19, 543, 546	
	補	過年度分消費税資本的収支調整額		
		当年度分消費税資本的収支調整額	1,067,989	5.5
	て	過年度分損益勘定留保資金	15, 594, 095	79.8
	,	当年度分損益勘定留保資金		
	h	操越工事資金		
		減 債 積 立 金	2,881,462	14.7
	財	建設改良積立金	_	└─── │
	New 1	水源開発積立金		
1.45	源	計 (e)	19, 543, 546	100.0
補			0	<u> </u>
当	年	度許可済未発行企業債	_	—

3 施 設

(1) 大久保浄水場

所在地:さいたま市桜区宿618 電話番号:048-852-8841 施設能力:1,300,000㎡/日

主要施設

用地面積:475,920m (工水共用)

令和3年4月1日現在

種別	区分	数量	種別	区分	数量
	取 水 口	2か所		薬品沈でん池	3 9 池
	導水 管	4連			(内30池傾斜板付)
	沈 砂 池	4池		急速ろ過池	86池
取水施設 導水施設	取水ポンプ井	6 井	浄水施設		
	取水ポンプ	 11台 (可変速5台) 		净 水 池	1 O 池(RC浄水池) 7 池(PC浄水池)
	分 水 井	2 并		送水ポンプ	21台
浄水施設	急速攪拌池	1 9 池	送水施設		(可変速17台)
	フロック形成池	3 9 池		中継ポンプ所	上赤坂中継ポンプ所

(2) 庄和浄水場

所在地:春日部市新宿新田100 施設能力:350,000m^{*}/日

電話番号:048-746-4411 用地面積:107,862m

主要施設

種別	区分	数量	種別 区分		数量
	取 水 口	1 か所		薬品沈でん池	8池
取水施設	導 水 管	2連		急速ろ過池	2 0 池
導水施設	取水ポンプ井	2 井	浄水施設		2 池(RC浄水池) 2 池(PC浄水池)
	取水ポンプ	4台(可変速)		净 水 池	
	着 水 井	1井			
浄水施設	混 和 池	2 池	送水施設	送 水 ポ ン プ	4台(可変速)
	フロック形成池	8池	达小旭议	中継ポンプ所	笹久保中継ポンプ所

(3) 行田浄水場 所在地:行田市小針1632 施設能力:500,000㎡/日

電話番号:048-559-3660 用地面積:267,407㎡

主要施設

令和3年4月1日現在

種別	区分 数量		種別	区分	数量
	取 水 口	1 か所		薬品沈でん池	1 0 池
取水施設 導水施設	導水管 · 導水路	1連	净水施設	急速ろ過池	4 0 池
	取水ポンプ所	荒木取水ポンプ所	计小地权	净 水 池	3池(RC浄水池)
	着 水 井	1井			3池(PC浄水池)
浄水施設	混 和 池	5 池	送水施設	送水ポンプ	8台(可変速)
	フロック形成池	10池	运水池政	中継ポンプ所	江南中継ポンプ所

(4) 新三郷浄水場

所在地:三郷市南蓮沼1 施設能力:365,000㎡/日 電話番号:048-953-6565 用地面積:137,515㎡

主要施設

	-					
種別	区分		区分 数量		区分	数量
	取 水		1 か所		薬品沈でん池	8池
	双 /八		(東京都と共同施設)	浄水施設	急速ろ過池	3 2 池
	導 水	管	1連	计小旭段	净 水 池	4池(RC浄水池)
取水施設 導水施設	夺 小	'B	1 座		伊 八 他	1池(PC浄水池)
	原 水 ポ ン プ 井		1式	送水施設	送水ポンプ	7台(可変速)
			(東京都と共同施設)		中間ポンプ井	1 井
	原 水 ポ ン	プ	4台(使用権)	浄水施設	中間 ポンプ	4台(可変速)
	着 水	井	1井	(高度浄水施設)	オゾン接触池	4池
浄水施設	混 和	池	4 池		生物活性炭吸着池	16池
	フロック形成池		8池			

(5) 吉見浄水場

所在地:比企郡吉見町大字大和田198	電話番号:0493-54-1484
施設能力:150,000㎡/日	用地面積:306,801㎡

主要施設

種別		区分		数量	種別	区分	数量
	取	水		1 か所		急速ろ過池	16池
取水施設	導	水	管	2連	浄水施設	净 水 池	2池(RC浄水池)
導水施設	沈	砂	池	2 池		行 八 他	2池(PC浄水池)
	取 7.	トポ	ンプ	4台(可変速2台)		送水ポンプ	4台(可変速)
	着	水	井	1井	送水施設		高坂中継ポンプ所
浄水施設	混	和	池	2 池	达小旭良	中継ポンプ所	高倉中継ポンプ所
伊小旭叹	フロ	ック形	成池	5 池			瀬戸増圧ポンプ所
	薬 品	沈で	ん 池	5 池			

(6) 水質管理センター

- 所在地: 行田市小針1632 (行田浄水場同一敷地内)
- 電話番号: 048-558-1051
- 事業内容: 浄水場の原水・浄水及び給水先の定期検査及び臨時検査 水源の水質監視及び調査 水質異常時の対応 浄水場の支援・バックアップ 水道水質に関する調査、研究 受水団体への技術的支援等 検査項目: 水道水質基準項目・水質管理目標設定項目・クリプトスポリジウム・ジアルジア

その他(独自に定めた項目)

主な分析機器等

分析機器	主な検査項目
分光光度計	非イオン界面活性剤等
水銀分析計	水銀
イオンクロマトグラフ(IC)	シアン化物イオン、フッ化物イオン、臭素酸、塩化物イオン等
イオンクロマトグラフ質量分析計(IC/MS)	過塩素酸、農薬類
誘導結合プラズマ質量分析計(ICP/MS)	カドミウム、ひ素、鉛等の金属類
ガスクロマトグラフ質量分析計(GC/MS) ・パージ&トラップ付四重極型 ・タンデム型	消毒副生成物等、揮発性有機化合物、かび臭物質、農薬類
高速液体クロマトグラフ(HPLC)	ホルムアルデヒド、陰イオン界面活性剤
高速液体クロマトグラフ質量分析計 (LC/MS)	ハロ酢酸類、フェノール類、農薬類
液体クロマトグラフ四重極飛行時間型 質量分析計(LC/Q-TOF MS)	净水処理対応困難物質、農薬類
全有機炭素分析計 (TOC)	全有機炭素
落射蛍光顕微鏡	クリプトスポリジウム、ジアルジア
リアルタイムPCR	クリプトスポリジウム、ジアルジア
ゲルマニウム半導体検出器	放射性ヨウ素、放射性セシウム
走查型電子顕微鏡	異物
フーリエ変換赤外分光光度計(FT-IR)	異物

装置	主な検査項目
水質試験車	六価クロム、シアン、フェノール類(吸光光度法)等

(7) 送水管口径別内訳表

	浄水場	大久保浄水場	庄和浄水場	行田浄水場	新三郷浄水場	吉見浄水場	計
	100mm	0	0	259	0	202	461
	150mm	0	0	202	0	0	202
	200mm	5	0	2	0	4, 797	4,804
	250mm	0	0	14, 475	0	7, 963	22, 438
	300mm	602	0	35, 888	47	9,682	46, 219
	350mm	4,047	0	6,066	0	3, 893	14,006
	400mm	8,744	1,946	41,883	175	2,212	54, 960
	450mm	11,202	1,187	3, 399	0	4,093	19, 881
	500mm	4, 466	8,627	27,878	0	11,608	52, 579
径別	600mm	14, 391	4,744	43, 778	0	2, 594	65, 507
別管	700mm	24, 563	24, 311	25, 282	700	17, 861	92, 717
路 延	800mm	17, 344	5, 994	41, 159	2,036	0	66, 533
長	900mm	33, 192	14,800	18, 215	0	0	66, 207
m	1,000mm	18, 368	0	19, 980	726	9, 292	48, 366
	1,100mm	14, 140	4,480	269	0	0	18, 889
	1, 200mm	16, 165	12, 599	11,037	17	0	39, 818
	1,350mm	24,671	964	33, 290	258	9,608	68, 791
	1, 500mm	8,708	10, 124	4,663	4, 282	15, 028	42, 805
	1,600mm	10, 363	0	0	0	0	10, 363
	1,650mm	0	1,101	4,695	12, 805	0	18,601
	1, 800mm	8,456	0	10,053	0	0	18, 509
	2, 000mm	4, 482	0	0	0	0	4, 482
	計	223, 909	90, 877	342, 473	21,046	98, 833	777, 138
6	空気弁(基)	576	242	1,098	60	277	2, 253
弁類	制水弁(基)	242	80	306	19	110	757
	分岐排水(基)	106	39	168	9	77	399

4 給 水

(1) 料金の推移

(単位:円/㎡)

\square	年度	昭和 43	44	45	46	47	48	4	9	5	50	51	52	5	3	54	55	56	57	58	5	9	60	61	62		平成 元	4	2	3	4
区分	\backslash							4 月	7 月	4 月	10 月			4 月	8 月						4 月	7 月						4 月	1 月		
	中央第一		11	l				15			20. 50	2	2	3	0	33	33. 50														
旧 広 域 第 一 水 道	部							2	0	2	24	2	5						39				42			47	48.	41	47.	70	59.13
	西部第一								20	2	24	2	:5	3	3	36	36.50														
旧 」 第二	- 広 域 水 道											<u> </u>		u	40.60	44. 50	51.30		5	9			7	7		79	81.	37	80.	18	86.10
拡 大	区域	ŝ														L	1	<u>u</u>				<u>.</u>				<u> </u>				108.	60
消費利	脱転嫁																										39 内	% 税	1.	5%内;	税

年度区分	平成 5 6 7 8	9 10	11 11	2 13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 4 月	令和 元 10 月	2
中央第一 中央第一 東部第一 西部第一	59. 13	57. 41		61	. 78											61.	78							
旧 広 域 第 二 水 道	86.10	65.35																						
拡大区域	108.60		8	6.13																				
消費税転嫁	1.5%内税						59	%外利	兑										8 夕	3% ▶税			10 外)% 税

注 (2本線)は条例改正を示す。

(2) 業務量の推移表

(2) 項目		果伤重の推 — 年度	平成28	29	30	令和元	2
		旧広域第一	21	21	21	21	21
	米ケ	旧広域第二	21	21	21	21	21
団 体	釵	拡 大	13	13	13	13	13
		書	55	55	55	55	55
		旧広域第一	452, 033, 780	452, 569, 310	456, 378, 370	459, 958, 810	457, 584, 200
承認水	〈量	旧広域第二	152, 022, 900	150, 017, 663	149, 567, 278	151, 190, 352	150, 817, 658
(m^{3}))	拡 大	27, 364, 614	27, 444, 036	26, 988, 170	26, 890, 230	26, 352, 220
		計	631, 421, 294	630, 031, 009	632, 933, 818	638, 039, 392	634, 754, 078
		大久保系	322, 768, 405	322, 829, 859	314, 213, 697	304, 226, 914	296, 505, 918
		庄 和 系	65, 748, 610	65, 771, 672	70, 380, 423	80, 150, 811	79, 210, 477
取 水	量	行 田 系	119, 143, 000	119, 645, 000	119, 345, 000	120, 686, 000	123, 877, 000
(m^{3}))	新 三 郷 系	91, 809, 180	87, 068, 844	90, 972, 396	97, 231, 608	103, 323, 996
		吉 見 系	41, 890, 940	48,007,370	49, 542, 990	48, 841, 920	44, 955, 620
		計	641, 360, 135	643, 322, 745	644, 454, 506	651, 137, 253	647, 873, 011
		大久保系	314, 974, 435	313, 252, 985	308, 166, 178	297, 079, 803	289, 784, 663
	送	庄 和 系	63, 898, 001	63, 430, 137	66, 491, 175	75, 711, 821	74, 983, 409
送	水	行田系	119, 026, 400	119, 525, 180	118, 942, 310	120, 428, 020	123, 701, 980
	/1/	新三郷系	91, 650, 220	86, 939, 280	90, 783, 100	97, 043, 370	103, 087, 610
水	量	吉 見 系	41, 811, 390	47, 927, 330	49, 452, 990	48, 752, 040	44, 739, 870
		計	631, 360, 446	631, 074, 912	633, 835, 753	639, 015, 054	636, 297, 532
量		大久保系	862,944	858, 227	844, 291	811,693	793, 931
里	日	庄 和 系	175, 063	173, 781	182, 168	206, 863	205, 434
4 3	亚	行田系	326, 100	327, 466	325, 869	329, 038	338, 910
(m^{3})	1	新三郷系	251,096	238, 190	248, 721	265,146	282, 432
	均	吉 見 系	114, 552	131, 308	135, 488	133, 202	122, 575
		計	1, 729, 755	1, 728, 972	1, 736, 536	1, 745, 943	1, 743, 281
		旧広域第一	451, 125, 782	452, 647, 783	455, 628, 003	458, 547, 381	457, 491, 161
		旧広域第二	151, 836, 855	149, 825, 257	149, 985, 176	152, 235, 777	151, 142, 215
(m ³)	拡 大	27, 330, 030	27, 363, 453	27,007,022	27, 015, 087	26, 424, 278
		計	630, 292, 667	629, 836, 493	632, 620, 201	637, 798, 245	635, 057, 654

(3)受水団体別業務状況

P	+	カ	保	玄
/		~~		1

					行业区域中		区长为		
			項目		行政区域内	給水人口	区域外	普及率	
	$\overline{\ }$				人口		給水人口		年間総配水量
戸 小	、団体				(人)	(人)	(人)	(%)	(m^3)
又小	4111				(A)	(B)		(B) / (A)	(C)
川		П		市	607, 750	607,746	0	100.0	65, 583, 414
蕨				市	75,841	75, 841	0	100.0	8,031,420
戸		田		市	140, 952	140, 952	0	100.0	16, 861, 000
さ	い	た	ま	市	1, 327, 691	1, 326, 569	0	99.9	136, 094, 440
川		越		市	353, 442	353, 410	0	100.0	40, 232, 518
所		沢		市	344,014	343, 997	0	100.0	36, 214, 410
狭		Щ		市	149,828	148, 823	0	99.3	17, 539, 314
入		間		市	146, 808	146, 748	0	100.0	16, 451, 810
朝		霞		市	143, 388	143, 388	0	100.0	15, 869, 853
志		木		市	76,601	76,601	391	100.0	7, 905, 998
和		光		市	83, 781	83, 779	0	100.0	9, 325, 540
新		座		市	166, 247	166, 100	0	99.9	17, 870, 946
富	\pm		見	市	112, 204	111, 321	260	99.2	11, 562, 140
Ş	じ	み	野	市	114, 474	114, 469	369	100.0	12, 921, 690
Ξ.		芳		町	38, 063	37, 764	107	99.2	5, 311, 544
飯		能		巿	78, 905	78, 167	0	99.1	10, 010, 305
		計			3, 959, 989	3, 955, 675	1,127	99.9	427, 786, 342

イ 庄 和 系

$\overline{\ }$		項目		行政区域内		区域外	並及交	
		坝日		人口	給水人口	給水人口	普及率	年間総配水量
受水団				(人)	(人)	(人)	(%)	(m^3)
文小凹	174			(A)	(B)		(B) / (A)	(C)
春	日	部	市	233, 145	233, 085	164	100.0	26, 717, 330
草	加		市	250, 579	250, 262	317	99.9	26, 219, 677
八	潮		市	92, 496	92, 493	0	100.0	10, 737, 150
11]	郷		市	142,663	142,663	0	100.0	15, 739, 830
th 日	川		市	73, 217	73, 206	0	100.0	7, 927, 736
越谷・	·松伏水	(道企業	寸	374, 212	374, 172	0	100.0	38, 551, 750
	計			1, 166, 312	1, 165, 881	481	100.0	125, 893, 473

西己ス	大量		一人あたり	家庭用基	本料金	料	職員数
県	水	自己水配水量	日平均	基本料金	施行	金	戚貝奴
受水量 (m ³)	占有率(%)	(m^3)	配水量(ℓ	(\square/m^3)	年月日	体	(人)
(D)	(D) / (C)					系	
56, 467, 540	86.1	9, 115, 874	296	177.7	R3.1.1	П	180
5, 095, 460	63.4	2, 935, 960	290	123.8	R元.10.1	用	14
12, 938, 704	76.7	3, 922, 296	328	102.9	R元.10.1	П	23
119, 938, 726	88.1	16, 155, 714	281	174.9	R元.10.1	П	369
34, 681, 320	86.2	5, 551, 198	312	114.4	R元.10.1	П	89
31, 931, 560	88.2	4, 282, 850	288	116.6	R元.10.1	П	80
15, 960, 244	91.0	1, 579, 070	323	121.0	R元.10.1	П	34
13, 977, 780	85.0	2, 474, 030	307	123.8	R元.10.1	П	41
10, 908, 908	68.7	4, 960, 945	303	115.5	R元.10.1	П	26
4, 654, 187	58.9	3, 251, 811	283	132.0	R元.10.1	П	9
6, 594, 442	70.7	2, 731, 098	305	99.4	R元.10.1	П	17
13, 567, 730	75.9	4, 303, 216	295	118.3	R元.10.1	П	23
9, 261, 690	80.1	2, 300, 450	285	116.6	R元.10.1	П	13
9, 259, 770	71.7	3,661,920	309	104.6	R元.10.1	П	14
3, 796, 900	71.5	1, 514, 644	385	110.0	R元.10.1	П	8
1, 273, 589	12.7	8, 736, 716	351	134.8	R元.10.1	口	20
350, 308, 550	81.9	77, 477, 792	296	_	_	_	960

西己フ	大量		一人あたり	家庭用基	本料金	料	職員数
県	水	自己水配水量	日平均	基本料金	施行	金	峨貝奴
受水量 (m ³)	占有率(%)	(m^3)	配水量(ℓ	(\square/m^3)	年月日	体 系	(人)
(D)	(D) / (C)					ন	
23, 572, 570	88.2	3, 144, 760	314	134.2	R元.10.1	П	35
22, 415, 060	85.5	3, 804, 617	287	123.8	R元.10.1	П	54
8, 591, 220	80.0	2, 145, 930	318	151.3	R元.10.1	П	24
12, 713, 570	80.8	3, 026, 260	302	107.3	R元.10.1	用	27
7, 428, 280	93.7	499, 456	297	123.8	R元.10.1	用	12
33, 735, 500	87.5	4, 816, 250	282	140.3	R元.10.1	П	114
108, 456, 200	86.1	17, 437, 273	296	_	_	_	266

	ウ行田系						
\square	〔 〔 〔 〔〕		行政区域内 人口	給水人口	区域外 給水人口	普及率	年間総配水量
四十			(人)	(人)	(人)	(%)	(m^3)
受水			(A)	(B)		(B) / (A)	(C)
熊	谷	市	194, 542	190, 200	0	97.8	24, 806, 017
行	田	市	79, 910	76, 949	0	96.3	9, 858, 179
加	須	市	112, 570	112, 447	44	99.9	15, 817, 481
羽	生	市	54, 232	54, 222	10	100.0	8, 179, 816
鴻	巣	市	117, 895	117, 833	0	99.9	13, 389, 030
上	尾	市	229, 729	229, 281	91	99.8	23, 515, 040
久	中	市	152, 120	152, 020	0	99.9	18, 254, 082
蓮	田	市	61,716	61,687	0	100.0	6, 945, 187
幸	手	巿	50, 153	50, 151	0	100.0	6, 808, 876
伊	奈	町	45,021	44, 931	0	99.8	4, 921, 982
宮	代	町	33, 792	33, 786	0	100.0	4,001,139
白	岡	市	52,462	52, 323	0	99.7	5, 987, 477
杉	戸	町	44, 376	44, 347	0	99.9	5, 413, 889
桶川	北本水道企	業団	141,094	140, 585	574	99.6	15, 595, 109
茨	城県五霄	貢 町	8,129	8,072	0	99.3	1, 709, 697
小	川	町	28, 886	28,617	0	99.1	3, 782, 340
寄	居	町	32, 755	32, 587	0	99.5	4, 633, 980
嵐	Ш	町	17, 759	17, 741	0	99.9	2, 760, 654
深	谷	巿	142, 556	140, 018	161	98.2	18, 115, 363
美	里	町	11, 059	11,015	0	99.6	2, 028, 769
本	庄	巿	77, 793	77, 508	644	99.6	11, 549, 496
神	<u>」</u> []	町	13, 341	13, 208	0	99.0	2, 062, 280
上	里	町	30, 769	30, 707	5	99.8	4, 452, 165
	計		1, 732, 659	1, 720, 235	1,529	99.3	214, 588, 048

西己フ	水量		一人あたり	家庭用基	本料金	料	職員数
県	水	自己水配水量	日平均	基本料金	施行	金	戚貝剱
受水量 (m ³)	占有率(%)	(m^3)	配水量(♪	(\square/m^3)	年月日	体	(人)
(D)	(D) / (C)					系	
8, 145, 205	32.8	16, 660, 812	357	160.1	R2.4.1		32
4, 309, 962	43.7	5, 548, 217	351	159.0	R2.4.1	用	16
11, 153, 709	70.5	4, 663, 772	385	151.4	R元.10.1		13
5, 465, 682	66.8	2, 714, 134	413	121.0	R元.10.1	用	10
8, 682, 330	64.8	4, 706, 700	311	152.9	R元.10.1		20
17, 526, 040	74.5	5, 989, 000	281	148.5	R元.10.1	用	44
17, 433, 167	95.5	820, 915	329	169.4	R元.10.1		35
6, 324, 279	91.1	620,908	308	163.1	R元.10.1	用	10
4, 774, 240	70.1	2, 034, 636	372	137.5	R元.10.1	口	12
4, 045, 437	82.2	876, 545	300	148.5	R元.10.1	口	9
3, 190, 697	79.7	810, 442	324	154.0	R元.10.1	口	8
4, 804, 703	80.2	1, 182, 774	314	184.8	R元.10.1		12
5, 086, 911	94.0	326, 978	334	143.0	R元.10.1	口	11
13, 012, 992	83.4	2, 582, 117	304	164.5	R元.10.1	用	41
763, 282	44.6	946, 415	580	225.5	R元.10.1		4
1, 440, 995	38.1	2, 341, 345	362	127.1	R元.10.1	用	13
3, 334, 347	72.0	1, 299, 633	390	391.9	R元.10.1	口	12
703, 533	25.5	2,057,121	426	94.9	R元.10.1	口	6
6, 357, 400	35.1	11, 757, 963	354	147.4	R元.10.1	併	32
1, 016, 400	50.1	1,012,369	505	117.5	R元.10.1	用	7
2, 351, 645	20.4	9, 197, 851	408	112.2	R元.10.1	口	16
1, 111, 994	53.9	950, 286	428	159.5	R元.10.1	単	4
510, 650	11.5	3, 941, 515	397	107.3	R元.10.1	併	11
131, 545, 600	61.3	83, 042, 448	342	—			378

工吉見系

		項目		行政区域内	給水人口	区域外	普及率	
		項口		人口		給水人口	自风平	年間総配水量
受水回				(人)	(人)	(人)	(%)	(m^3)
又小臣	1 			(A)	(B)		(B) / (A)	(C)
東	松	山	市	90, 297	90, 249	0	99.9	12, 785, 894
滑	川		町	19, 583	19, 502	51	99.6	2, 432, 093
川	島		町	19,622	19,610	0	99.9	2, 765, 781
吉	見		町	18, 521	18, 484	0	99.8	3, 742, 132
鳩	Щ		町	13, 506	13, 493	0	99.9	1, 687, 946
坂戸、	鶴ヶ島	水道企	:業団	170, 342	169,627	0	99.6	19, 873, 366
日	高		市	55, 142	55,108	0	99.9	7, 763, 495
毛		山	町	33, 079	33,004	0	99.8	4, 419, 493
越	生		町	11, 280	11, 265	0	99.9	1, 807, 371
と	き が	わ	町	10, 874	10, 513	0	96.7	1, 631, 254
	計			442, 246	440, 855	51	99.7	58, 908, 825

才 合 計

		項目		行政区域内	給水人口	区域外	普及率	
				人口		給水人口		年間総配水量
受水				(人)	(人)	(人)	(%)	(m^3)
X	41			(A)	(B)		(B) / (A)	(C)
大	久	保	系	3, 959, 989	3, 955, 675	1,127	99.9	427, 786, 342
庄	和		系	1, 166, 312	1, 165, 881	481	100.0	125, 893, 473
行	田		系	1,732,659	1, 720, 235	1,529	99.3	214, 588, 048
吉	見		系	442, 246	440, 855	51	99. 7	58, 908, 825
合			計	7, 301, 206	7, 282, 646	3, 188	99.7	827, 176, 688

注1 行政区域内人口及び給水人口は、令和3年3月31日現在。

- 2 県水占有率は、(年間県水受水量/年間総配水量)×100によって算出した。
- 3 一人あたり日平均配水量は、(年間総配水量/給水人口)÷365×1,000によって算出した。
- 4 家庭用基本料金は、令和3年4月1日現在、1か月基本水量20m³(口径20mm)として 算出、水道メーター使用料、消費税及び地方消費税を含む。
- 5 料金体系欄中の「用」は用途別、「口」は口径別、「併」は用途別と口径別の併用、 「単」は単一料金を示す。
- 6 職員数は、令和3年4月1日現在。

配フ	水量		一人あたり	家庭用基	本料金	料	職員数
県	水	自己水配水量	日平均	基本料金	施行	金	収貝奴
受水量 (m ³)	占有率(%)	(m^3)	配水量(ℓ	(\square/m^3)	年月日	体	(人)
(D)	(D) / (C)					系	
10, 853, 342	84.9	1, 932, 552	388	96.3	R元.10.1		25
2, 432, 093	100.0	0	342	115.5	R元.10.1		5
1, 738, 333	62.9	1,027,448	386	101.4	R元.10.1		9
3, 742, 132	100.0	0	555	126.5	R元.10.1		12
1, 417, 490	84.0	270, 456	343	119.9	R元.10.1		6
16, 240, 189	81.7	3, 633, 177	321	138.1	R元.10.1		53
4, 438, 311	57.2	3, 325, 184	386	126.5	R元.10.1		16
1, 988, 170	45.0	2, 431, 323	367	117.7	R元.10.1		10
802, 894	44.4	1,004,477	440	203.5	R元.10.1		7
1, 094, 350	67.1	536, 904	425	178.8	R元.10.1		7
44, 747, 304	76.0	14, 161, 521	366				150

西己フ	水量		一人あたり	家庭用基	本料金	料	職員数
県	水	自己水配水量	日平均	基本料金	施行	金	峨貝剱
受水量 (m ³)	占有率(%)	(m^3)	配水量(ℓ	(\square/m^3)	年月日	体	(人)
(D)	(D) / (C)					系	
350, 308, 550	81.9	77, 477, 792	296	—	_	—	960
108, 456, 200	86.1	17, 437, 273	296	_		—	266
131, 545, 600	61.3	83, 042, 448	342	_		—	378
44, 747, 304	76.0	14, 161, 521	366	_		_	150
635, 057, 654	76.8	192, 119, 034	311	_	_	—	1,754

(4) 受水団体別家庭用1m³当たりの料金表

(単位:円)

∕区分		大 久	、保	系	_L.	<i>T. —</i>	1-			
料金	中	<u>八 八</u> 央		部	庄	和 系	行	田 系	吉見系	
90円以上			99.4	和光市			94.9	嵐山町	96.3 東松山市	
100円未満										
100円以上	102 9	百田市	104 6	ふじみ野市	107.3	三郷市	107.3	上里町	101.4 川島町	
110円未満	102.0) ып	101.0		101.0		101.0	<u></u>)	101.1)([10].)	
			110.0				110.0			
110円以上 120円未満				三芳町 川越市				本庄市 美里町	115.5 滑川町 117.7 毛呂山町	
1201 171间				朝霞市			117.0	天王門	119.9 鳩山町	
				所沢市						
			116.6	富士見市						
			118.3	新座市						
120円以上	123.8	蕨市	121.0	狭山市	123.8	草加市	121.0	羽生市	126.5 日高市	
130円未満				入間市		吉川市	127.1	小川町	126.5 吉見町	
130円以上			132_0	志木市	134 2	春日部市	137 5	幸手市	 138.1 坂戸、鶴ヶ島	(企)
140円未満				飯能市	104.2	(1) (1) (1) (1) (1)	101.0	+ 1 111	130.1 火/ 、西方 西方	
140円以上					140.2	越谷·松伏(企)	142 0	杉戸町		
140円以上 150円未満					140.0	题看"仏八(正)		深谷市		
								伊奈町		
							148.5	上尾市		
150円以上			-		151 3	八潮市	151 4	加須市		
160円太二					101.0	* *1/4*1*		鴻巣市		
							154.0	宮代町		
								行田市		
							1	神川町		
160円以上 170円未満								熊谷市 蓮田市		
⊥1∪口木個								連田中 桶川北本(企)		
								久喜市		
170円以上									178.8 ときがわ町	
180円未満	177.7	川口市								
180円以上							184.8	白岡市	203.5 越生町	
								茨城県五霞町		
								寄居町		
》 1				0				3 火キー の かい		

 注
 1)
 家庭用1か月20m³(口径20mm)使用時の1m³当たりの料金を算出。

 2)
 水道メーター使用料を含む。

 3)
 消費税及び地方消費税を含む。

 4)
 令和3年4月1日現在。

(5)受水団体県水占有率表(令和2年度実績)

区分		大	久保系							+ 8 7		
占有率		中央		西部		庄和系		行田系		吉見系		
90以上			91.0	狭山市	93.7	吉川市	95.5	久喜市	100.0	滑川町		
							94.0	杉戸町	100.0	吉見町		
							91.1	蓮田市				
35以上90未満	88.1	さいたま市	88.2	所沢市	88.2	春日部市						
	86.1	川口市	86.2	川越市	87.5	越谷・松伏 (企)						
			85.0	入間市	85.5	草加市						
0以上85未満			80.1	富士見市	80.8	三郷市	83.4	桶川北本(企)	84.9	東松山市		
					80.0	八潮市	82.2	伊奈町	84.0	鳩山町		
							80.2	白岡市	81.7	坂戸、鶴ヶ島(企)		
75以上80未満	76. 7	戸田市	75.9	新座市			79.7	宮代町				
70以上75未満			71.7	ふじみ野市			74.5	上尾市				
			71.5	三芳町			72.0	寄居町				
			70.7	和光市			70.5	加須市				
							70.1	幸手市				
55以上70未満			68.7	朝霞市			66.8	羽生市	67.1	ときがわ町		
5以上65未満	63.4	蕨市	58.9	志木市			64.8	鴻巣市	62.9 57.2	川島町 日高市		
50以上55未満			_				53.9	神川町				
							50.1	美里町				
0以上50未満	1						44.6	茨城県五霞町	45.0	毛呂山町		
							43.7	行田市	44.4	越生町		
0未満			12.7	飯能市			38.1	小川町				
							35.1	深谷市				
							32.8	熊谷市				
							25.5	嵐山町				
							20.4	本庄市				
							11.5	上里町				
- 11-11-1	l	85.8		77.5								
系統別			31.9		-1	86.1		61.3		76.0		

(6) 水 質(令和2年度)

(6) 水 質(令和2年) 採水簡					大	久	保	浄	水場	1 7
1末小區	1 <i>1</i> 71		原	水			中央系	净水		
試験項目		最 高	最 低	平 均	回 数	最 高	最 低	平 均	回数	最 高
気温(9時)	°C	32.4	-3.1	15.1	364	32.4	-3.1	15.1	364	32.4
水 温	°C	30.3	3.9	16.2	251	30.2	4.3	16.3	251	29.8
一 般 細 菌	CFU/m l	28,000	35	4,100	243	0	0	0	243	0
大腸菌(原水はMPN)		6,600	6	750	12			-	12	
カドミウム及びその化合物	mg∕ℓ	0.0000	0.0000	0.0000	12	0.0000	0.0000	0.0000	12	0.0000
水銀及びその化合物	mg∕ℓ	0.00000	0.00000	0.00000	4	0.00000	0.00000	0.00000	4	0.00000
セレン及びその化合物	mg∕ℓ	0.000	0.000	0.000	12	0.000	0.000	0.000	12	0.000
鉛及びその化合物	mg/ l	0.006	0.000	0.000	12	0.000	0.000	0.000	12	0.000
ヒ素及びその化合物	mg/ l	0.002	0.001	0.001	12	0.000	0.000	0.000	12	0.000
六価クロム化合物	mg/l	0.008	0.000	0.000	12	0.000	0.000	0.000	12	0.000
 亜 硝 酸 態 窒 素	mg/ l	0.050	0.016	0.033	12		0.000	0.000	12	0.000
シアン化物イオン及び塩化シアン	mg/l	0.000	0.000	0.000	12	0.000	0.000	0.000	12	0.000
	mg/l	2.7	1.1	1.8	12	2.6	1.1	1.9	12	2.6
フ ッ 素 及 び そ の 化 合 物	mg/ l	0.15	0.00	0.09	12	0.11	0.00	0.00	12	0.12
ホ ウ 素 及 び そ の 化 合 物	mg/ l	0.08	0.02	0.05	12	0.08	0.02	0.04	12	0.08
四塩化炭素	mg/ l	0.0000	0.0000	0.0000	12		0.0000	0.0000	12	0.0000
1,4-ジオキサン	mg/ ℓ	0.000	0.000	0.000	12		0.000	0.000	12	0.000
(シス+トランス)-1, 2-ジクロロエチレン	mg/ l	0.000	0.000	0.000	12		0.000	0.000	12	0.000
ジクロロメタン	mg/ ℓ	0.000	0.000	0.000	12		0.000	0.000	12	0.000
テトラクロロエチレン	mg/ ℓ	0.000	0.000	0.000	12		0.000	0.000	12	0.000
トリクロロエチレン	mg/ l	0.000	0.000	0.000	12		0.000	0.000	12	0.000
ベンゼン	mg/ l	0.000	0.000	0.000	12		0.000	0.000	12	0.000
塩素酸	mg/ l	0.00	0.00	0.00	12		0.00	0.00	12	0.00
	mg/ l					0.000	0.000	0.000	12	0.000
クロロホルム	mg/ ℓ					0.000	0.001	0.004	12	0.000
ジクロロ酢酸	mg/ l					0.012	0.000	0.003	12	0.010
ジブロモクロロメタン	mg/ l					0.007	0.000	0.002	12	0.007
	mg/ ℓ					0.000	0.000	0.000	12	0.000
総トリハロメタン	mg/ l					0. 022	0.005	0.011	12	0.022
トリクロロ酢酸	mg/ ℓ					0. 020	0.000	0.004	12	0.012
ブロモジクロロメタン	mg/ ℓ				\sim	0.008	0.002	0.004	12	0.018
ブロモホルム	mg/ l					0.001	0.000	0.000	12	0.001
ホルムアルデヒド	mg/ ℓ					0.001	0.000	0.000	12	0.001
亜鉛及びその化合物	mg/ ℓ	0. 027	0.000	0.000	12		0.000	0.000	12	0.000
アルミニウム及びその化合物	mg/ ℓ	6.4	0.19	0.92	12		0.00	0.02	12	0.000
鉄及びその化合物	mg/ ℓ	4.3	0.32	0.79	12		0.00	0.00		0.01
銅及びその化合物	mg/ ℓ	0.008	0.000	0.000	12		0.000	0.000	12	0.000
ナトリウム及びその化合物	mg/ ℓ	20	8	13			8	13	4	20
マンガン及びその化合物	mg/ ℓ	0. 29	0.039	0.079	12		0.000	0.000	12	0.000
<u>塩</u> 化物イオン	mg/ ℓ	27	4	15	12		11	20	12	33
カルシウム、マグネシウム等(硬度)	mg/ ℓ	94	68	83	4		68	82	4	92
蒸発残留物	mg/ ℓ	205	139	167	4		133	160	4	198
陰 イ オ ン 界 面 活 性 剤	mg/ ℓ	0.00	0.00	0.00	4		0.00	0.00	4	0.00
ジェオスミン	mg/ ℓ	0.00004	0.000001	0.00002	12		0.000000	0.000001	12	0.00002
2 - メチルイソボルネオール	mg/ ℓ	0.000008	0.000000	0.000003	12		0.000000	0.000001	12	0.000002
非 イ オ ン 界 面 活 性 剤	mg/ ℓ	0.00000	0.000	0.00000	4		0.000000	0.00001	4	0.00004
フェノール 類	mg/ ℓ	0.0000	0.0000	0.0000	4		0.0000	0.0000	4	0.0000
有機物(TOC)	mg/ ℓ	4.2	1.1	1.6	12		0.0000	0.0000	12	1.0
p H 值		8.3	7.4	7.7	251	7.3	6.9	7.1	251	7.3
p 11 直 味		0.0	1.4	1.1	201	1.0	0.9		251	1.0
				+	251			-	251	
<u>大</u> <u>久</u> 色 度	度	40	2	9	251	0	0	0	251	0
巴	 度	40 240	2.4	9	251		-		251	-
政 反 残 留 塩 素		240	2.4	15	201	0.0	0.0	0.0		0.0
¹² 田 温 茶	mg/ l					1.3	0.6	0.9	251	1.3

			1		庄	和	● 水	場			
西部系	浄 水			原		10 1	1. /14	 浄	水		水質基準
最低	平均	回 数	最 高	最 低	平均	回 数	最 高	最 低	平均	回 数	小黄盘中
-3.1	15.1	364		-1.5	15.7	365	32.8	-1.5	15.7	365	
4.9	16.3	251	31.0	3.6	16.1	253	30.6	3.5	16.1	253	
0	0	243		210	5,400	243	1	0.0	0	243	100以下
Ű	-	12	,	7	64	12	1	· · · · ·	-	12	検出されないこと
0.0000	0.0000	12		0.0000	0.0000	12	0.0000	0.0000	0.0000	12	0.003以下
0.00000	0.00000	4		0.00000	0.00000	4	0.00000	0.00000	0.00000	4	0.0005以下
0.000	0.000	12		0.000	0.000	12	0.000	0.000	0.000	12	0.01以下
0.000	0.000	12		0.000	0.000	12	0.000	0.000	0.000	12	0.01以下
0.000	0.000	12		0.001	0.002	12	0.000	0.000	0.000	12	0.01以下
0.000	0.000	12		0.000	0.000	12	0.000	0.000	0.000	12	0.02以下
0.000	0.000	12		0.006	0.016	12	0.000	0.000	0.000	12	0.04以下
0.000	0.000	12		0.000	0.000	12	0.000	0.000	0.000	12	0.01以下
1.1	1.9	12		1. 2	2.0	12	2.7	1.4	2.1	12	10以下
0.00	0.00	12		0.09	0.12	12	0.13	0.00	0.10	12	0.8以下
0.02	0.05	12		0.03	0. 06	12	0. 10	0.03	0.10	12	1.0以下
0.0000	0.0000	12		0.0000	0.0000	12	0.0000	0.0000	0.0000	12	0.002以下
0.000	0.0000	12		0.000	0.0000	12	0.000	0.000	0.000	12	0.05以下
0.000	0.000	12		0.000	0.000	12	0.000	0.000	0.000	12	0.04以下
0.000	0.000	12		0.000	0.000	12	0.000	0.000	0.000	12	0.02以下
0.000	0.000	12		0.000	0.000	12	0.000	0.000	0.000	12	0.01以下
0.000	0.000	12		0.000	0.000	12	0.000	0.000	0.000	12	0.01以下
0.000	0.000	12		0.000	0.000	12	0.000	0.000	0.000	12	0.01以下
0.000	0.000	12		0.000	0.000	12	0.00	0.00	0.00	12	0.6以下
0.000	0.000	12		0.00	0.00		0.000	0.000	0.000	12	0.02以下
0.000	0.004	12					0.008	0.002	0.000	12	0.02以下
0.000	0.003	12					0.005	0.002	0.001	12	0.03以下
0.000	0.003	12					0.007	0.000	0.003	12	0.1以下
0.000	0.000	12	/ /				0.000	0.000	0.000	12	0.01以下
0.005	0.000	12					0.025	0.007	0.000	12	0.1以下
0.000	0.012	12					0.023	0.002	0.003	12	0.03以下
0.002	0.004	12					0.009	0.002	0.005	12	0.03以下
0.002	0.000	12					0.001	0.000	0.000	12	0.09以下
0.000	0.000	12	/ /				0.000	0.000	0.000	12	0.08以下
0.000	0.000	12		0.000	0.006	12	0.000	0.000	0.000	12	1.0以下
0.00	0.02	12			0.60		0.04	0.000	0.02	12	0.2以下
0.00	0.02	12		0.25	0.00	12	0.04	0.00	0.02		0.3以下
0.000	0.000	12		0.20	0.000	12	0.000	0.000	0.00	12	<u>0.3以</u> 1.0以下
0.000	13	4		9	14	4	20	0.000	0.000	4	200以下
0,000	0.000	12		0.017	0.037	12	0.000	0.000	0.000	12	0.05以下
0.000	21	12		8	17	12	30	0.000	0.000	12	200以下
68	82	4	1	49	73	4		51	75	4	300以下
129	157	4		106	166	4	209	111	176	4	500以下
0.00	0.00	4		0.00	0.00	4	0.00	0.00	0.00	4	0.2以下
0.000000	0.000000	12			0.00002	12	0.000003	0.000000		12	0.00001以下
0.000000	0.000001	12			0.000002	12	0.000003	0.000000	0.000002	12	0.00001以下
0.00000	0.00001	4		0.000000	0.00002	4	0.00003	0.000000	0.000001	4	0.02以下
0.0000	0.0000	4		0.0000	0.0000	4	0.0000	0.0000	0.000	4	0.02以下
0.0000	0.0000	12		1.1	1.3	12	1.0	0.0000	0.0000	12	3以下
6.8	7.1	251		7.2	7.6	253	7.4	6.9	7.1	253	5.8以上8.6以下
0.0		251	0.2	1.4	1.0	200	1.1	0.9		253	異常でないこと
	-	251			+	253			-	253	異常でないこと
0	0	251	80	3	8	253	0	0	0	253	5以下
0.0	0.0	251		3.5	19	253	0.0	0.0	0.0	253	2以下
0.6	0.8	251		0.0	10	200	1.1	0.6	0.0	253	
0.0	0.0	201					1.1	0.0	0.0	200	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	採水管	師		行	田	洕	• 水	、 場	i		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											r
N Y (2)											
		-									
The B ($\beta R + k \ L M P N)$ 3,300 1 440 12 12 1.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-									
P P A D A M D C 0.0000 0.0000 0.0000 4 0.0000 4 0.0000 4 0.0000 4 0.0000 4 0.0000 4 0.0000 4 0.0000 4 0.0000 4 0.0000 4 0.0000 4 0.0000 4 0.0000 4 0.0000 0.000 12 0.000 0.000 12 0.000 0.000 12 0.000 0.000 12 0.000 0.000 12 0.000 0.000 12 0.000 0.000 12 0.000 0.000 12 0.000 0.000 12 0.000 0.000 12 0.000 0.000 12 0.000 0.000 12 0.000 0.000 12 0.000 0.000 12 0.000 0.000 12 0.000 0.000 12 0.000 0.000 12 0.000 0.000 12 0.000 0.000 12 0.000 </td <td></td> <td>CFU∕mℓ</td> <td>· · · · ·</td> <td></td> <td>,</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td>		CFU∕mℓ	· · · · ·		,		0	0	0		
k k C C 0 0.0000 0.0000 0.0000 0.0000 0.0000 12 0.000 L D U D U D 0.000		(0					0.0000		-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
B B C P D O D											
$\mathbb{R} \ \mathbb{R} \ \mathcal{G} \ \mathcal{F} \ \mathcal{O} \ \mathbb{R} \ \mathbb{A} \ \mathbb{K} \ \mathbb{A} \ \mathbb{M} \ \mathcal{I} \ \mathbb{L} \ \mathbb{A} \ \mathbb{C} \ \mathbb{A} \ \mathbb{M} \ \mathcal{I} \ \mathbb{I} \ \mathbb{A} \ \mathbb{C} \ \mathbb{A} \ \mathbb{M} \ \mathcal{I} \ \mathbb{I} \ \mathbb{C} \ \mathbb{C}$											
$\bar{\Lambda}$ $\bar{\mu}$ $\bar{\nu}$											
m m											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
動機整重素及び重弱機能重素 mm/ℓ 2.6 1.1 1.0 12 2.6 1.1 1.0 12 2.6 1.1 1.0 12 2.6 1.1 1.0 12 2.6 1.1 1.0 12 2.1 1.1 1.0 1.2 2.1 $\gamma \neq \pi \gtrsim \sigma n \in ch$ mg/ℓ 0.09 0.000 0.000 12 0.000											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											2.6
$s \ 0 \neq \mathbb{R}$ \mathcal{R} \mathcal{R} \mathfrak{R}											0.14
B \mathbb{E}											0.08
1 $4 - \psi' \neq \psi = \psi'$ mg/ℓ 0.000 0.000 0.000 12 0.000 0.000 12 0.000 $(x+y+y+x)=1, y=-y=n=x+y=v$ mg/ℓ 0.000 0.000 0.000 12 0.000 <t< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0000</td></t<>		_									0.0000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,4-ジオキサン		0.000						0.000		0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(シス+トランス)-1, 2-ジクロロエチレン		0.000	0.000	0.000			0.000	0.000		0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ジクロロメタン	_	0.000						0.000		0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	テトラクロロエチレン		0.000	0.000	0.000	12	0.000	0.000	0.000	12	0.000
a \mathbb{R} <	トリクロロエチレン	mg∕ℓ	0.000	0.000	0.000	12	0.000	0.000	0.000	12	0.000
2 u u v	ベンゼン	mg∕ℓ	0.000	0.000	0.000	12	0.000	0.000	0.000	12	0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	塩素酸	mg/ l	0.00	0.00	0.00	12	0.00	0.00	0.00	12	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	クロロ酢酸	mg∕ℓ					0.000	0.000	0.000	12	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	クロロホルム	mg/ l					0.009	0.002	0.004	12	
	ジクロロ酢酸	mg/ l					0.005	0.000	0.003	12	
a h y ng/l ng/l 0.018 0.007 0.012 12 h y y n ng/l 0.005 0.002 0.004 12 y y n x y y y 0.005 0.002 0.004 12 y n t y <td>ジブロモクロロメタン</td> <td>mg/ l</td> <td></td> <td></td> <td></td> <td></td> <td>0.004</td> <td>0.002</td> <td>0.003</td> <td>12</td> <td></td>	ジブロモクロロメタン	mg/ l					0.004	0.002	0.003	12	
Image: P Image: P <thimage: p<="" th=""> Image: P <th< td=""><td>臭 素 酸</td><td>mg/ l</td><td></td><td></td><td></td><td></td><td>0.000</td><td>0.000</td><td>0.000</td><td>12</td><td></td></th<></thimage:>	臭 素 酸	mg/ l					0.000	0.000	0.000	12	
$T = \overline{\psi} \circ f = 0$ $M \circ f = $	総トリハロメタン	mg∕ℓ					0.018	0.007	0.012	12	
プロモホルム mg/ℓ 0.000 0.000 0.000 0.000 12 ホルムアルデヒド mg/ℓ 0.017 0.000 0.006 12 0.016 0.000 0.000 12 亜鉛及びその化合物 mg/ℓ 1.8 0.31 0.69 12 0.02 0.00 0.000 12 0.11 ケルミーウム及びその化合物 mg/ℓ 1.4 0.19 0.57 12 0.00 0.000 0.00 12 0.12 御及びその化合物 mg/ℓ 1.4 0.19 0.57 12 0.000 0.000 12 0.01 小シウム及びその化合物 mg/ℓ 0.09 0.000 0.003 12 0.000 12 0.00 エンガン及びその化合物 mg/ℓ 14 8 10 4 14 9 12 4 11 マンガン及びその化合物 mg/ℓ 119 0.024 0.063 12 0.000 0.000 12 0.09 塩化物 イ オン mg/ℓ 1157 135 149 4 159 129 142 4 19 ウムシックトム mg/ℓ	トリクロロ酢酸	mg/ l					0.005	0.002	0.004	12	
ホ ル ム ア ル デ ヒ ド mg/ℓ 0.017 0.000 0.006 0.000 0.000 12 亜 鉛 及 び そ の 化 合 物 mg/ℓ 0.017 0.000 0.006 12 0.000 0.000 12 0.011 アルミニウム及びその化合物 mg/ℓ 1.8 0.31 0.69 12 0.02 0.00 0.000 12 0.01 第 及 び そ の 化 合 物 mg/ℓ 1.4 0.19 0.57 12 0.00 0.000 0.00 12 2.5 朝 及 び そ の 化 合 物 mg/ℓ 0.009 0.000 0.000 12 0.000 0.000 0.000 12 0.000 r ン ガ ン 及 び そ の 化 合 物 mg/ℓ 14 8 10 4 14 9 12 4 11 r ン ガ ン 及 び そ の 化 合 物 mg/ℓ 0.19 0.024 0.063 12 0.000 0.000 12 0.09 塩 化 物 イ オ ン mg/ℓ 71 44 62 4 72 58 66 4 77 恋 務 残 留 物 mg/ℓ 0.00 0.000 0.000 1.00003 0.00000 0.0000 12 0.0000 0.000 12 0.0000		mg∕ℓ					0.006	0.003	0.005	12	
 亜 鉛 及 び そ の 化 合 物 mg/ℓ 0.017 0.000 0.006 12 0.000 0.000 0.000 0.000 0.000 0.000 12 0.011 0.000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000 <li< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.000</td><td>0.000</td><td>0.000</td><td>12</td><td></td></li<>							0.000	0.000	0.000	12	
アルミニウム及びその化合物 mg/ℓ 1.8 0.31 0.69 12 0.02 0.00 0.00 12 3.3 鉄及びその化合物 mg/ℓ 1.4 0.19 0.57 12 0.00 0.00 0.00 12 2.5 鋼及びその化合物 mg/ℓ 0.009 0.000 0.000 12 0.000 0.000 0.000 0.000 12 0.000 ケリウム及びその化合物 mg/ℓ 0.019 0.024 0.063 12 0.000 0.000 0.000 12 0.000 生いガン及びその化合物 mg/ℓ 0.19 0.024 0.063 12 0.000 0.000 0.000 12 0.000 塩化 ガイオン mg/ℓ 21 8 15 12 27 13 20 12 2.9 カルシウム、マグネシウム等 (硬度) mg/ℓ 71 44 62 4 72 58 66 4 77 蒸発<発売 売 両 mg/ℓ 0.00 0.00 0.00 4 0.00 0.000 2.00000 2.00000 2.00000 2.00000 2.00000											
鉄 及 び そ の 化 合 物 mg/ℓ 1.4 0.19 0.57 12 0.00 0.00 0.00 12 2.5 鋼 及 び そ の 化 合 物 mg/ℓ 0.009 0.000 0.000 12 0.000 0.000 0.000 12 0.000 0.000 12 0.000 0.000 12 0.000 r > J > D > D > D > D > D > D > D > D > D											0.015
鋼 及 び そ の 化 合 物 mg/ℓ 0.009 0.000 0.000 12 0.000 0.000 12 0.000 t ト リ ウ ム 及 び そ の 化 合 物 mg/ℓ 14 8 10 4 14 9 12 4 19 v ン ガ ン 及 び そ の 化 合 物 mg/ℓ 0.19 0.024 0.063 12 0.000 0.000 0.000 12 0.09 塩 化 物 イ オ ン mg/ℓ 21 8 15 12 27 13 20 12 22 カルシウム、マグネシウム等 (硬度) mg/ℓ 71 44 62 4 72 58 66 4 77 蒸 発 残 留 物 mg/ℓ 157 135 149 4 159 129 142 4 199 陰 イ オ ン 界 面 活 性 剤 mg/ℓ 0.00 0.00 0.0003 12 0.00003 0.00000 <td></td> <td>3.8</td>											3.8
オトリウム及びその化合物 mg/ℓ 14 8 10 4 14 9 12 4 14 マンガン及びその化合物 mg/ℓ 0.19 0.024 0.063 12 0.000 0.000 0.000 12 0.099 塩<化											2.9
r > J > J > J > J > J > J > J > J > J >		-									
\underline{u}		_									19
$h \nu \cdot b \cdot j \cdot v \cdot v \cdot k \cdot v \cdot k \cdot k \cdot k \cdot k \cdot k \cdot k$		_									
蒸発残留物mg/ℓ 157 135 149 4 159 129 142 4 199 陰イオン界面活性剤 mg/ℓ 0.00 0.00 0.00 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00000 12 0.000000 0.00000 12 0.000000 0.00000 12 0.000000 12 0.000000 12 0.000000 12 0.000000 12 0.00000 12 0.000000 12 0.000000 12 0.000000 12 0.000000 12 0.00000 12 0.00000 12 0.000000 12 0.000000 12 0.00000 12 0.00000 13 12 0.00000 0.0000 12 0.00000 13 13 12 0.0000 0.0000 13 13 13 13 13 13 13 13 13 </td <td></td> <td>29</td>											29
陰 イ オ ン 界 面 活 性 剤 ジ x オ ス ミ ン mg/lmg/l0.000.000.0040.000.000.0040.00ジ x オ ス ミ ン r オ ス キ ン mg/l0.0000040.000010.000003120.0000030.0000000.000002120.0000002 - メチルイソボルネオール mg/l0.000030.0000000.000002120.0000000.000000120.0000002 - メチルイソボルネオール mg/l0.000030.0000000.000002120.0000000.000000120.000000非 イ オ ン 界 面 活 性 剤 mg/lmg/l0.0050.0000.000040.0000.000000.0000040.00007 x / - p μ mg/l0.00000.00000.000040.00000.000040.00007 x / - p μ mg/l0.00000.00000.000040.00000.00000.00000.000090.60.7122.51.3120.90.60.7122.5 <td< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		_									
\vec{v} \vec{x} \vec{x} \vec{x} \vec{x} \vec{x} \vec{x} \vec{n}											
$2 - \cancel{x} + \cancel{v} + $											
μ l μ											
7 x l mg/ℓ 0.0000 0.0000 0.0000 4 0.0000 0.0000 4 0.0000 0.0000 4 0.0000 0.0000 4 0.0000 0.0000 4 0.0000 f M mg/ℓ 2.6 1.0 1.3 12 0.9 0.6 0.7 112 2.5 p H de 8.0 7.2 7.6 252 7.1 6.9 7.0 252 8.0 μ μ de 8.0 7.2 7.6 252 7.1 6.9 7.0 252 8.0 μ 252 8.0 7.2 7.6 252 7.1 6.9 7.0 252 8.0 2.52 1.3 2.52 0.0 0.0 0.0 2.52 2.5 1.3 2.52 0.0 0.0 0											
有機物(TOC))mg/l 2.6 1.0 1.3 12 0.9 0.6 0.7 12 2.5 p H 値 8.0 7.2 7.6 252 7.1 6.9 7.0 252 8.0 味 - - - 252 - - 252 2.5 臭 気 - + 252 - - 252 - 鱼 度 度 32 3 7 252 0 0 0 252 66 濁 - - - - 252 - - 252 - - 252 - - 252 - - 252 - - 252 - - 252 - - 252 - - 252 - - 252 - - 252 - - 252 66 - - 252 66 - - 252 92 - - 252 92 92 - - 252											
p H 値 8.0 7.2 7.6 252 7.1 6.9 7.0 252 8.0 味 具 気 気 気 気 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.3</td></th<>											2.3
味 一 252 臭 気 + 252 - 252 色 度 度 32 3 7 252 0 0 0 252 66 濁 度 度 140 2.5 13 252 0.0 0.0 0.0 252 92											8.0
臭 気 + 252 - 252 色 度 度 32 3 7 252 0 0 0 252 66 濁 度 度 140 2.5 13 252 0.0 0.0 0.0 252 924			0.0				1	0.0			0.0
色 度 度 32 3 7 252 0 0 0 252 66 濁 度 度 140 2.5 13 252 0.0 0.0 0.0 252 92					+	252			-		_
廣 度 140 2.5 13 252 0.0 0.0 0.0 252 924		度	32	3				0	0		68
								-			920
μ	残 留 塩 素	mg/ l					1.0	0.7	0.8		

新	Ē	郷	浄	水場	<u>=</u>			吉見消	▶ 水 場		
原		741-	11	<u>》</u> 浄	水			原	水		水質基準
最 低	平均	回 数	最 高	最 低	平均	回 数	最 高	最 低	平均	回 数	ANGLE I
-0.7	16.3	365	33.6	-0.7	16.3	365	32.8	-1.6	15.7	365	
2.9	16.0	253	31.7	4.3	16.8	253	27.9	4.1	14.9	251	
670	9,800	243	0	0	0	243	48,000	600	5,100	243	100以下
14	210	12	-	-	-	12	3,700	8	400	12	検出されないこと
0.0000	0.0000	4	0.0000	0.0000	0.0000	4	0.0000	0.0000	0.0000	12	0.003以下
0.00000	0.00000	4	0,00000	0.00000	0.00000	4	0.00000	0.00000	0.00000	4	0.0005以下
0.000	0,000	4	0.000	0.000	0.000	4	0.000	0.000	0.000	12	0.01以下
0.000	0.000	4	0.000	0.000	0.000	4	0.005	0.000	0.000	12	0.01以下
0.002	0.002	4	0.000	0.000	0.000	4	0.002	0.001	0.001	12	0.01以下
0.000	0.000	4	0.000	0.000	0.000	4	0.009	0.000	0.000	12	0.02以下
0.005	0.015	12	0.000	0.000	0.000	12	0.048	0.000	0.019	12	0.04以下
0.000	0.000	4	0.000	0.000	0.000	4	0.000	0.000	0.000	12	0.01以下
1.1	2.0	12	2.8	1.5	2.1	12	2.4	0.9	1.6	12	10以下
0.09	0.12	12	0.13	0.08	0.11	12	0.14	0.00	0.08	12	0.8以下
0.04	0.06	4	0.07	0.00	0.06	4	0.08	0.02	0.05	12	1.0以下
0.0000	0.0000	4	0.0000	0.0000	0.0000	4	0.0000	0.0000	0.0000	12	0.002以下
0.000	0.000	4	0.000	0.000	0.000	4	0.000	0.000	0.000	12	0.05以下
0.000	0.000	4	0.000	0.000	0.000	4	0,000	0.000	0.000	12	0.04以下
0.000	0.000	4	0.000	0.000	0.000	4	0.000	0.000	0.000	12	0.02以下
0.000	0.000	4	0.000	0.000	0.000	4	0.000	0.000	0.000	12	0.01以下
0.000	0.000	4	0.000	0.000	0.000	4	0.000	0.000	0.000	12	0.01以下
0.000	0.000	4	0.000	0.000	0.000	4	0.000	0.000	0.000	12	0.01以下
0.00	0.00	12	0.00	0.00	0.00	12	0.00	0.00	0.00	12	0.6以下
0.00	0.00	12	0.000	0.000	0.000	4	0.00	0,00	0.00		0.02以下
			0.003	0.000	0.000	4					0.06以下
			0.000	0.000	0.000	4					0.03以下
			0.000	0.000	0.002	4					0.1以下
			0.003	0.000	0.000	12					0.01以下
			0.011	0.002	0.005	4					0.1以下
			0.000	0.002	0.000	4					0.03以下
			0.003	0.000	0.001	4					0.03以下
			0.001	0.000	0.000	4					0.09以下
			0.001	0.000	0.000	4					0.08以下
0.000	0,005	4	0.000	0.000	0.000	4	0.019	0.000	0,000	12	1.0以下
0.37	1.3	4	0.01	0.00	0.00	4	7.4	0.21	1.1	12	0.2以下
0.31	0.96	4	0.00	0.00	0.00	4	7.2	0.17	0.94	12	0.3以下
0.000	0.000	4	0.000	0.000	0.000	4	0.008	0.000		12	1.0以下
9	14	4	20	11	16	4	16	9		4	200以下
0.018	0.047	4	0.000	0.000	0.000	4	0. 23	0.021	0.053	12	0.05以下
7	18	12	31	11	21	12	22	3	12	12	200以下
58	69	4	79	57	68	4	90	68	80	4	300以下
127	168	4	191	119	156	4	182	145	164	4	500以下
0.00	0.00	4	0.00	0.00	0.00	4	0.00	0.00		4	0.2以下
0.000002	0.000002	12	0.000000	0.000000	0.000000	12	0.000004	0.000001		12	0.00001以下
0.000000	0.000002	12	0.000002	0.000000	0.000000	12	0.000006	0.000000	0.000002	12	0.00001以下
0.000	0.000	4	0.000	0.000	0.000	4	0.000	0.000	0.000	4	0.02以下
0.0000	0.0000	4	0.0000	0.0000	0.0000	4	0.0000	0.0000	0.0000	4	0.005以下
1.0	1.4	12	0.0000	0.0000	0.0000	12	3. 5	0.0000	1.3	12	3以下
7.2	7.6	253	7.3	6.8	7.1	253	7.9	7.1	7.6	251	5.8以上8.6以下
				0.0		253		1			異常でないこと
	+	253			-	253			+	251	異常でないこと
4	8	253	0	0	0	253	32	3	6	251	5以下
3.1	17	253	0.0	0.0	0.0	253	250	2.3	18	251	2以下
0.1	11	200	0.0	0.5	0.6	253	200	2.0	10	201	
			0.7	0.0	0.0	200					

採水管	師	士	見 浄	• 水	場	
			浄	水		水質基準
試験項目		最 高	最 低	平 均	回 数	
気温(9時)	°C	32.8	-1.6	15.7	365	
水温	°C	28.8	4.6	15.7	251	
一 般 細 菌	CFU∕mℓ	0	0	0	243	100以下
大腸菌(原水はMPN)				-	12	検出されないこと
カドミウム及びその化合物	mg/ l	0.0000	0.0000	0.0000	12	0.003以下
水銀及びその化合物	mg/ l	0,00000	0,00000	0,00000	4	0.0005以下
セレン及びその化合物	mg/ l	0.000	0.000	0.000	12	0.01以下
鉛及びその化合物	mg/ l	0.000	0.000	0.000	12	0.01以下
ヒ素及びその化合物	mg/ ℓ	0.000	0.000	0.000	12	0.01以下
六価クロム化合物	mg/ ℓ	0.000	0.000	0.000	12	0.02以下
<u> 一</u> 一 二 に し ボ ボ	mg/ ℓ	0.000	0.000	0.000	12	0.02以下
<u> 空 昭 段 空 </u> 楽 シアン化物イオン及び塩化シアン	mg/ ℓ	0.000	0.000	0.000	12	0.01以下
	-					
硝酸態窒素及び亜硝酸態窒素フ ッ素及びその化合物	mg/l	2.4	0.9	1.6	12	10以下
	mg/l	0.14	0.00	0.00	12	0.8以下
ホウ素及びその化合物	mg/l	0.09	0.02	0.05	12	1.0以下
	mg/l	0.0000	0.0000	0.0000	12	0.002以下
1,4-ジオキサン	mg/l	0.000	0.000	0.000	12	0.05以下
(シス+トランス)-1, 2-ジクロロエチレン	mg/l	0.000	0.000	0.000	12	0.04以下
ジクロロメタン	mg/l	0.000	0.000	0.000	12	0.02以下
テトラクロロエチレン	mg/l	0.000	0.000	0.000	12	0.01以下
トリクロロエチレン	mg∕ℓ	0.000	0.000	0.000	12	0.01以下
	mg∕ℓ	0.000	0.000	0.000	12	0.01以下
塩素酸	mg∕ℓ	0.00	0.00	0.00	12	0.6以下
	mg∕ℓ	0.000	0.000	0.000	12	0.02以下
ク ロ ロ ホ ル ム	mg∕ℓ	0.008	0.000	0.004	12	0.06以下
ジクロロ酢酸	mg∕ℓ	0.005	0.000	0.002	12	0.03以下
ジブロモクロロメタン	mg/l	0.005	0.000	0.003	12	0.1以下
臭 素 酸	mg∕ℓ	0.000	0.000	0.000	12	0.01以下
総トリハロメタン	mg∕ℓ	0.018	0.004	0.010	12	0.1以下
トリクロロ酢酸	mg∕ℓ	0.004	0.000	0.000	12	0.03以下
ブロモジクロロメタン	mg∕ℓ	0.007	0.002	0.004	12	0.03以下
ブロモホルム	mg∕ℓ	0.000	0.000	0.000	12	0.09以下
ホルムアルデヒド	mg∕ℓ	0.000	0.000	0.000	12	0.08以下
亜鉛及びその化合物	mg∕ℓ	0.000	0.000	0.000	12	1.0以下
アルミニウム及びその化合物	mg∕ℓ	0.03	0.00	0.01	12	0.2以下
鉄及びその化合物	mg∕ℓ	0.00	0.00	0.00	12	0.3以下
銅及びその化合物	mg∕ℓ	0.000	0.000	0.000	12	1.0以下
ナトリウム及びその化合物	mg∕ℓ	17	10	14	4	200以下
マンガン及びその化合物	mg∕ℓ	0.000	0.000	0.000	12	0.05以下
塩化物イオン	mg∕ℓ	27	7	15	12	200以下
カルシウム、マグネシウム等(硬度)	mg∕ℓ	91	67	80	4	300以下
蒸発残留物	mg∕ℓ	173	129	156	4	500以下
陰イオン界面活性剤	mg∕ℓ	0.00	0.00	0.00	4	0.2以下
ジェオスミン	mg∕ℓ	0.000002	0.000000	0.000001	12	0.00001以下
2 - メチルイソボルネオール	mg∕ℓ	0.000002	0.000000	0.000001	12	0.00001以下
非イオン界面活性剤	mg∕ℓ	0.000	0.000	0.000	4	0.02以下
フェノール類	mg∕ℓ	0.0000	0.0000	0.0000	4	0.005以下
有機物(TOC)	mg∕ℓ	0.9	0.5	0.7	12	3以下
p H 值		7.4	7.0	7.1	251	5.8以上8.6以下
味				-	251	異常でないこと
臭 気				-	251	異常でないこと
色度	度	0	0	0	251	5以下
濁 度	度	0.0	0.0	0.0	251	2以下
残 留 塩 素	mg∕ℓ	1.1	0.7	0.8	251	