
令和 4年11月 1日 埼玉県水質分析精度管理調査報告会

令和4年度水質分析精度管理調查解析結果(BOD)

埼玉県環境科学国際センター 水環境担当

試料採取とBOD測定の流れ

BODの計算方法

● 植種を行わない場合

$$BOD = \frac{(D_1 - D_2)}{P}$$

● 植種を行う場合

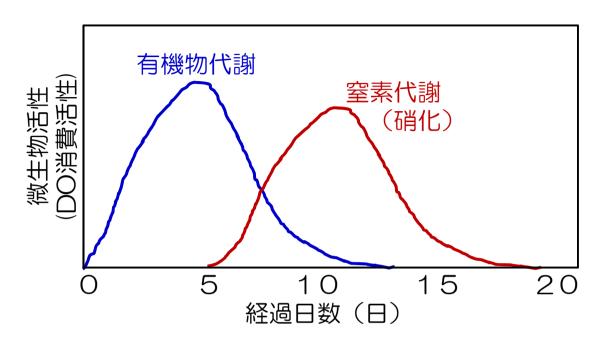
$$BOD = \frac{(D_1 - D_2) - (B_1 - B_2) \times f}{P}$$

D1: 希釈試料のO日目のDO

D2: 11 5日目のDO

P: 希釈試料中の試料の割合

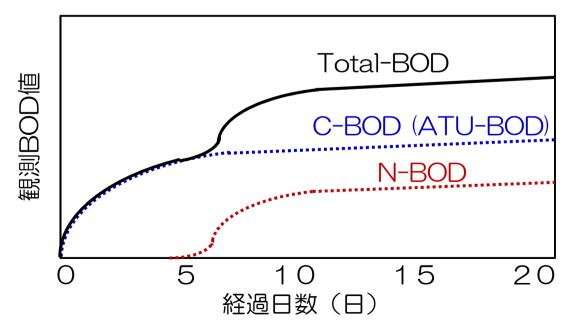
B1: 植種液BOD測定の際の希釈植種液のO日目のDO


B2: 11 5日目のDO

f: x/y

x: 試料BOD測定の際の希釈試料中の植種液(%)

y: 植種液BOD測定の際の希釈植種液中の植種液(%)


時間経過とDO消費活性(上)、観測BOD値の関係(下)

- 一般論として
- 1)有機物代謝(分解)

やや遅れて

- 2)窒素代謝(硝化)
- の順番に反応は進行

- ・有機物に比較してアンモニア 態窒素多い
- ・試料や植種源に硝化細菌多い

などの場合

硝化由来のDO消費が

BODに反映される可能性大

試薬組成とBOD設定値

試薬名	化学式	調製濃度		
D(+)-グルコース	C ₆ H ₁₂ O ₆	43.0 mg/L		
L-グルタミン酸	C ₅ H ₉ NO ₄	43.0 mg/L		

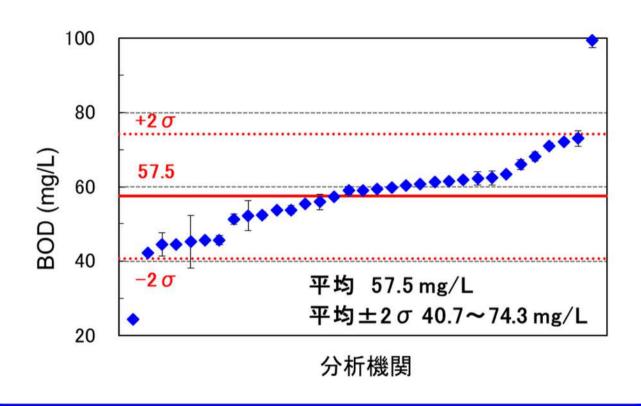
各試薬1gあたりの

酸素要求量理論値(g)と分解率(%)

D(+)がルコース: 1.07g、 60% * L-がルタミン酸: 0.98g、 77% *

*用水と廃水、vol.18 (10), p.1277, 1976 から

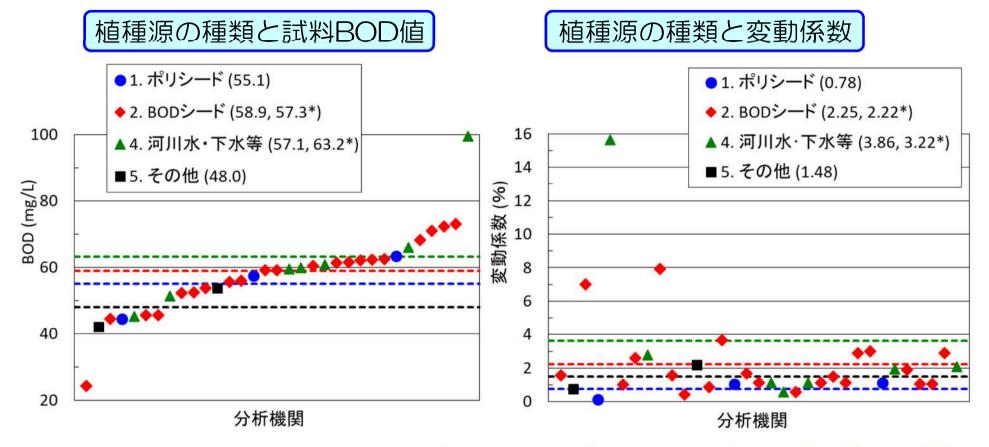
各試薬のBOD想定値


- D(+)-グルコース 300mg/L: 約220mg/L
- L-グルタミン酸 300mg/L: 約220mg/L
- 上記各150mg/L混合液: 約220mg/L (JIS混合標準液)

今回の着目点

- ・暫く実施してこなかった、ある程度高濃度の標準試料の分析
- ・想定例:放流水質BOD 60mg/Lの浄化槽

BOD設定値: 60.1 mg/L


エラーバーは分析値ごとの標準偏差

- ・参加機関数は33であり、Grubbs棄却検定により2機関が除外された。
- 平均値は、全体:57.8mg/L、棄却後:57.5mg/Lであった。
- ・棄却後の「平均値±2σ」の範囲は、40.7~74.3mg/Lであった。

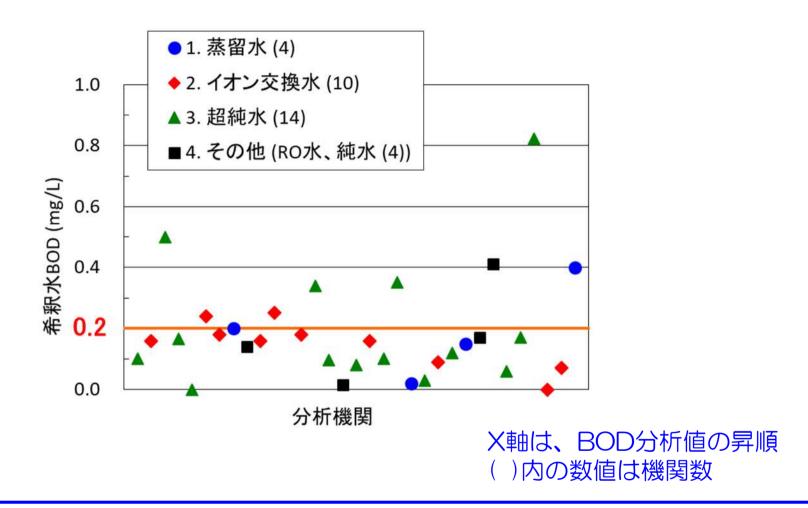
植種源の種類からの考察

BOD設定值: 60.1 mg/L

X軸は、2つのグラフで共通(BOD分析値の昇順) ()内の数値は平均値、*の数値は棄却機関込みの値

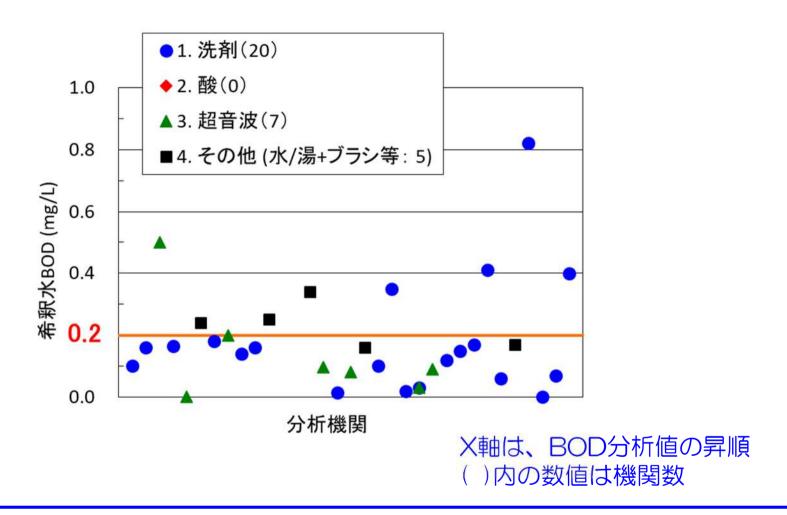
- 植種毎の機関数はポリシード:3、BODシード:21、河川水·下水等:7、 その他:2であった。
- BOD分析平均値(棄却後)と設定値に対する比率は、ポリシード: 91.7%、 BODシード: 98.0%、河川水·下水等: 95.1%、その他: 79.8%であった。

植種源とBOD平均値の状況


※データは、	外れ値棄却後の値

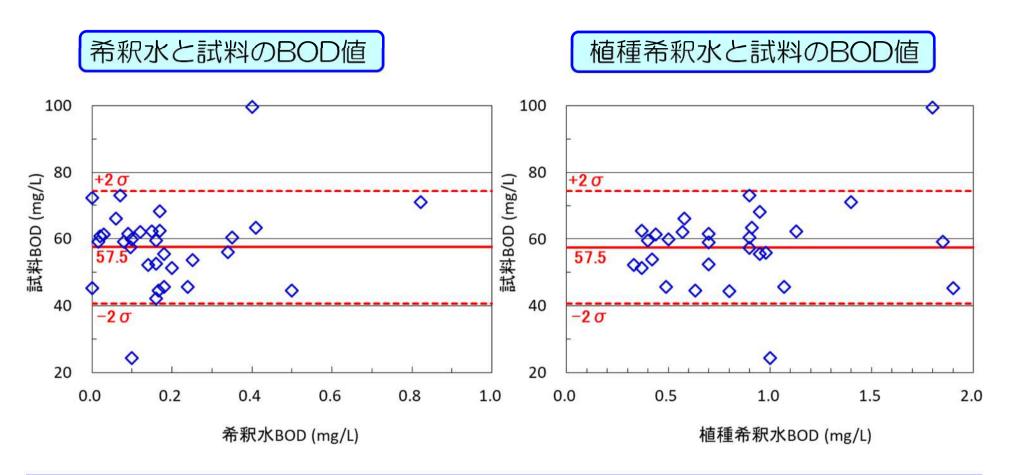
	H24	H25	H27	H28	H29	H30	R01	R02	R03	R04
設定値 BOD [mg/L]	19.6 19.6	5.6	16.6	44.7	5.6	5.6	5.6	1.0	25.1	60.1
設定値 NH ₄ -N [mg/L]	26.2 26.2	-	20.0	-	-	20.0	20.0	-	-	-
全体 [mg/L]	19.7 20.9	5.8	17.2	41.0	5.16	5.28	5.43	2.21	24.5	57.5
ポリシード [mg/L]	20.4 22.1	5.6	16.6	36.8	4.86	5.14	5.34	1.13	使用な し	55.1
BODシード [mg/L]	19.1 20.2	5.8	16.9	41.1	5.51	5.31	5.24	2.25	24.3	58.9
河川水等 [mg/L]	21.6 23.9	6.1	18.7	44.6	5.33	5.50	6.09	2.35	25.2	57.1

最も値が高かった植種源


最も値が低かった植種源 8

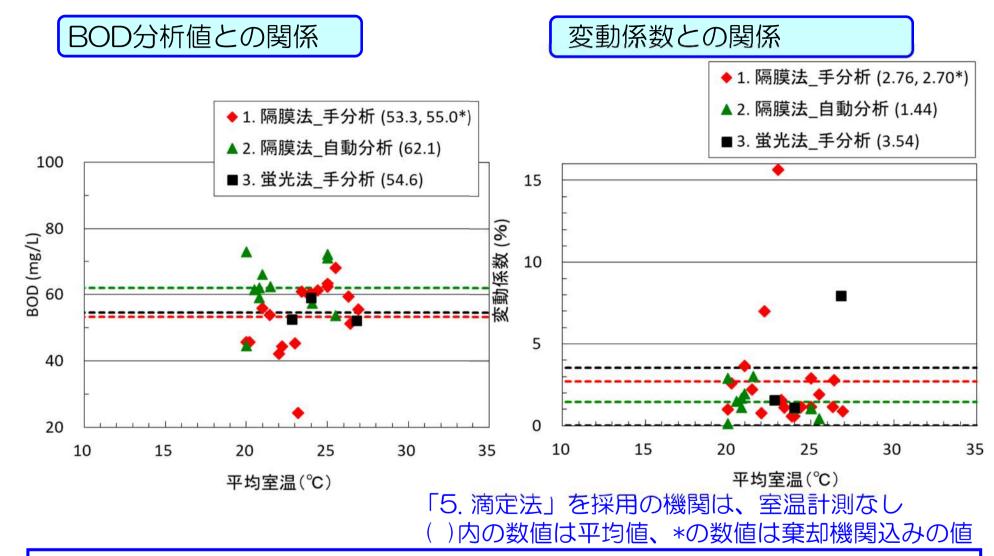
使用した水の種類と希釈水のBOD分析値の比較(全体)

- イオン交換水で、O.2mg/L以下を満足する傾向があるか。
- 一方、超純水は、ばらつきが大きいか。


ふらんびん洗浄方法と希釈水のBOD分析値の比較(全体)

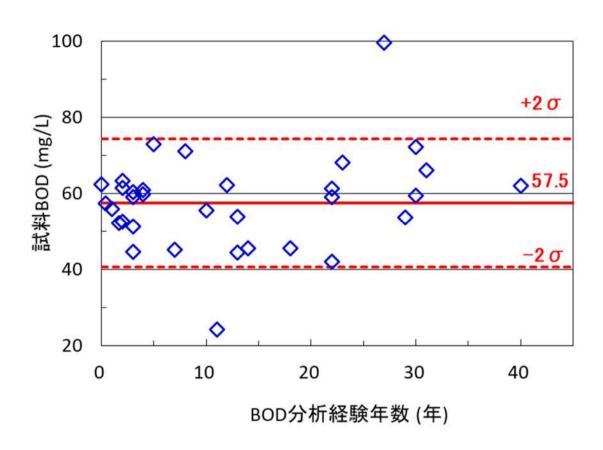
- 洗剤使用の機関が多い。
- 洗剤+超音波の併用機関もある。

希釈水·植種希釈水と試料のBOD分析値の比較(全体)


BOD設定值: 60.1 mg/L

• 希釈水/植種希釈水の性状と試料の分析値の間に相関はなさそうである。

使用機器や分析室温との関係(全体)


BOD設定值: 60.1 mg/L

- ・手法毎の機関数は、隔膜電極法(手分析):18、隔膜電極法(自動分析):11、 蛍光電極法(手分析):3、滴定:1であった。
- 自動分析装置で、室内変動係数が小さい傾向があった。

BOD分析経験年数と試料のBOD分析値の比較(全体)

BOD設定値: 60.1 mg/L

• BOD分析の経験年数と試料の分析値との間に相関はなかった。 (技術をしっかりと修得すれば、分析精度に問題はない)

BOD分析精度のこれまでの推移

-	H24	H25	H27	H28	H29	H30	RO1	R02	R03	R04
設定値 BOD [mg/L]	19.6 19.6	5.6	16.6	44.7	5.6	5.6	5.6	1.0	25.1	60.1
設定値 NH ₄ -N [mg/L]	26.2 26.2	_	20.0	-	_	20.0	20.0	-	-	-
参 加 機関数 [機関] *	33 (34) 34 (34)	34 (35)	37 (36) 28 (28)	36 (37)	38 (39)	30 (32)	33 (35)	30	31 (-)	31 (33)
室 内 変動係数 [%]**	2.27 (2.39) 2.56 (2.56)	3.03 (2.97)	2.98 (3.00) 2.59 (2.59)	2.20 (2.24)	3.99 (4.40)	3.64 (3.52)	3.06 (3.08)	4.09	2.70	2.37 (2.34)
室 間変動係数[%]**	12.7 (16.1) 14.1 (14.1)	14.0 (19.0)	14.1 (12.1) 12.2 (12.2)	13.8 (15.4)	19.9 (24.8)	13.8 (19.9)	14.3 (23.7)	20.2	13.2	14.6 (21.6)

^{*()}の数値は、外れ値報告を含む全機関数

^{**()}の数値は、外れ値があった場合にそれを含んだ値

【BOD値の予想の方法(共通)】

- TOC値、COD値(簡易検査含む)を参考にする
- ・透視度、臭気、粘性、SS(見た目含む)を参考にする →特に、高濃度が予想される場合に有効?
- ・当該試料の過去の分析値、業種情報等を参考にする
 - →生分解性(=酸素消費可能性)を考慮する上で、業種情報は重要

【BOD低濃度が予想される場合の対応例】

- 初期希釈倍率を1倍に近いものにする(例:1.2倍)
- 初期希釈倍率を複数設定で行う(例:3連)

【BOD高濃度が予想される場合の対応例】

• 初期希釈倍率を高め、希釈段数を多めに設定する。

ご質問と考察(1)

- Q:今回、希釈植種水の数値が高く、それに伴いグルコースグルタミン酸の値も 高くなりました。原因として考えられることを教えてください。雰囲気中からのコンタミもあり得ますでしょうか。
- A:スライドNo.11から、希釈水/植種希釈水のBOD値と試料の分析値の間に相関はなさそうです。故に、雰囲気中からのコンタミのリスクも含めて、個々の分析環境での原因が考えられるかもしれません。今後の方向性として、使用水やふらんびん洗浄方法等の情報(スライドNo.9, 10)もご参考ください。
- Q:BODシードを希釈水に混合する時及び植種自体のBODを測定する時、植種を 分取する際は上澄みを取った方がいいでしょうか、あるいは植種を良く混合 しBODシードが均一の状態で取った方がよいでしょうか。
- A:市販植種製剤は、着床材ごと希釈水に投入、調整する場合が多いです。調整 後、BODシードは着床材ごと使用可能、ポリシードはろ過してから使用、と 記載しています。当センターでは、ろ過後に使用しています、ご参考まで。
- Q:植種を作製した後、室温に放置する時間の目安はありますか、またBODシード使用時の注意する点はありますか。
- A: 1点目のご質問は、植種製剤の取り扱いについてでしょうか。2点目のご質問も含めて、基本的には、各製剤のマニュアルを目安にしていただければ良いと考えます。

16

ご質問と考察(2)

Q:残留塩素が無いことを確認した、見た目にBOD値が低いと思われる試料でBOD1よりもBOD5の方がDO値が高いことがある。考えられる原因と対策はありますか。

A: 当センターでの分析業務でも、ごく稀に5日目のDO値が高くなったケースがありました。BODの測定は有機物存在条件下でDOの減少を測定することですから、ご質問は極めてBODが低い試料の測定で生じた現象と推察いたします。まずは、希釈水のDOの変化と併せて一連の測定を検討されてはどうでしょうか。「BODという方法を用いたところ、マイナスの値が得られた」という事実ですから「〈O.5mg/L」という報告になると考えます。

Q:希釈水のBOD値がO.2mg/Lを超えることがありますが、考えられる原因と対策はありますか。また、希釈水の攪拌はどの様にしたらよいでしょうか。 (当社ではポリタンクに入れたものを振り混ぜています。

A: そもそも、希釈水のBOD値がO.2mg/Lを超えたかどうかは、5日目にならないとわかりません。一方で、スライドNo.11から、希釈水/植種希釈水のBOD値と試料の分析値の間に相関はなさそうです。対策としては、使用水やふらんびん洗浄方法等の改善が考えられます(スライドNo.9, 10)。エアレーションの空気由来の汚染にも注意が必要です。なお、当センターでは、希釈水BODは3連で分析しています。また、(植種)希釈水の混合攪拌は、20℃インキュベータ内でエアレーションで行っています。

BOD測定時の留意事項

- 試料採取後、速やかにBODの測定を開始
- BOD値予測においては業種情報はかなり重要
- 酸化性物質、毒性物質、pH等の適切な前処理
- 必要に応じた適切な植種源の使用
- DO計の校正やメンテナンス
- 20℃での温度管理
- 適正なDO消費率の範囲(40~70%)
- ・ 植種液のDO消費の補正(植種源使用時)
- 経験を積む・・・分析経験と伝承の重要性