機械学習によるCFRP破壊過程におけるAE波形評価方法の開発

白石知久*1 森田寛之*1 小熊広之*2

Development of AE Waveform Evaluation Method in CFRP Fracture Process by Machine Learning

SHIRAISHI Tomohisa*1, MORITA Hiroyuki*1, OGUMA Hiroyuki*2

抄録

CFRP破壊モードの分類のため、樹脂割れ・界面はく離・繊維破断の3つの損傷モードに 着目し時間周波数解析を行った。また位置評定などによりAcoustic Emission (AE) 信号発 生箇所を特定したうえでCFRP内部において実際に生じている損傷を観察し、AE信号の時 間周波数解析結果との相関について考察した。その結果、樹脂割れ、繊維破断、界面剥離 の各損傷モードの信号を特定できた。さらにニューラルネットワークを用いた判別モデル を作成し、損傷モードの判別を行った。

キーワード:AE法,時間周波数解析,クラスタリング,ニューラルネットワーク

1 はじめに

炭素繊維強化複合材料: Carbon Fiber Reinforced-Plastic (以下CFRP) は、軽量、高強度、 錆びない等の優れた特性を有していることから、 近年では、航空機や自動車を代表とする輸送分野 のみならず、浄化槽などの住宅設備機器など幅広 い分野において利用されつつある。しかし、金属 材料と比較してCFRPは不均一であるため、強度 のばらつきが生じやすい。このため、構造材料と しての信頼性、安全性に課題がある。またCFRP は強い衝撃を受けた場合、繊維が樹脂から剥離す る為、金属系の素材と比較して耐衝撃性に劣る。 さらに成型不良等により内部に欠陥が生じた場合 も強度が著しく低下する。CFRPの適用拡大が期 待される航空機体や自動車両には、外部からの衝 撃等に加え、紫外線や酸性雨、塩害、塩素等の影 響が複合的に加わるため、樹脂の劣化が促進され ることによる強度の低下及び破壊が懸念されてい

*2 材料技術担当

る。しかも目視等による外観検査では、内部欠陥 の発見や劣化の進行状況の把握は困難という問題 を抱えている。このようなことからCFRPの安全 性、信頼性向上のため、破壊に関する研究が重要 視されている。

一般にCFRP積層板の損傷の種類として、樹脂 割れ、界面はく離、層間はく離、繊維破断が知ら れている。特に、初期に現れる樹脂割れ・界面は く離の一つであるトランスバースクラックを把握 することは、安全な設計をするうえで非常に重要 な要因である。

複合材料の破壊機構の解明に関しては、 Acoustic Emission (AE)法が有効とされている。 トランスバースクラックをはじめとする損傷が生 じた際に発生するAE波は、破壊モードによって 異なることが知られている¹⁾。これまでにAEの周 波数特性を用いた破壊モード分類等が行われてき ている。しかしながら、研究者によって異なる見 解が示され信頼性に欠けているため、統一的な分 類方法が求められている²⁾。そこで、本研究では

^{*1} 電気・電子技術・戦略プロジェクト担当

損傷モード分類を行うためにAE信号の時間-周 波数解析に着目した。

CFRP破壊過程におけるAE波形の評価方法の開 発を目指す本研究において、本年度は、比較的特 徴があるトランスバースクラックに焦点を当て、 トランスバースクラックの形成過程を分類するた めに最適な時間-周波数解析法の選定を行うこと を目指した。

2 試験方法

2.1 クロスプライ積層板引張試験

2.1.1 試験片作製

CFRPプリプレグシート(東レ製、T700S/#2592) を用い積層して試験片を作成した。積層構成はク ロスプライで、[0₂/904]sとした。CFRP積層板は、 130 ℃、90 min、0.2 MPaの条件でホットプレスし、 全長140 mm、幅15 mmで切り出したのち、両側面 をエメリー紙で研磨後、バフ研磨を施した。最後 に試験片の両端面に35×20 mmのGFRP(Glass Fiber Reinforced-Plastic)タブをエポキシ系接着剤 により取り付けた(図1)。

2.1.2 位置評定試験

AE信号発生位置を把握し、AE信号発生時に試 験片内部で発生している代表的現象を把握するた め、AE信号発生位置の位置評定を行った、まず 位置評定を行うため、PLB法によるAE信号を発 生させ、CFRP材料内部を伝播するAE信号の縦波 の伝播速度を計測した。伝播速度からAE信号発 生箇所の位置評定を行った。

2.1.3 試験方法

引張試験の試験条件は室温大気中にてクロスへ ッド速度 1mm/min で行った。試験片中央に AE セ ンサを取り付け、その上下 20mm 離れたところに AE センサを取り付けた(図 1)。

AEセンサはNF回路ブロック社製 AE-900M、AE
の計測システムは、PicoScope4424および、
Labview®で作成したAE計測プログラムを用いた。
AEの計測条件として、プリアンプゲインを60 dB、
しきい値を800mV、AE計測プログラムによる測
定周波数を20 kHz~1200 kHzとした。

2.1.4 内部損傷状況の把握

引張試験の試験中に発生したAE信号について 位置評定を行い、試験を中断して試験片を取り出 し、AE信号発生箇所について内部損傷状況の観 察を行った。内部損傷観察には電子顕微鏡(日立 ハイテクノロジーズ製 SU3500)を用いた。

2.1.5 時間周波数解析結果と損傷状況の相関

前節で実施したAE信号発生箇所における内部 損傷状況の観察結果と、その発生したAE信号の 時間周波数解析結果について相関を検討した。時 間周波数解析手法はWavelet変換法を用いた。

2.2 炭素繊維単体試験

引張試験時の内部損傷状況と AE 信号の時間周 波数解析結果から、炭素繊維の繊維破断の AE 信 号を特定するため、炭素繊維に対し、引張試験を 実施した。

2.2.1 炭素繊維単体試験方法

炭素繊維12000本を帯状に 構成したカーボンファイバ ー長繊維 (T700SC 東レ 製)を使用した。

引張試験の試験条件は室 温大気中にてクロスヘッド 速度 1mm/min で行った。試 験片中央に AE センサを取 り付け、その上下 45mm 離 れた位置に AE センサを取 り付けた(図 2)。

図2 炭素繊維試験片図

AE センサおよび AE の計測システムの計測条件 は、CFRP クロスプライ積層板引張試験時と同様 とした。

2.2.2 炭素繊維単体試験 時間周波数解析

炭素繊維の繊維破断時に発生したと考えられる AE 信号について検討した。時間周波数解析手法 は Wavelet 変換法を用いた。

2.3 DCB 試験

界面剥離・繊維破断・樹脂割れの信号を把握す るため、DCB(Double Cantilever Beam)試験を実 施した。

2.3.1 試験片作製

東レ製 CFRP プリプレグシート (T700S/#2592) を用い積層して試験片を作成した。積層構成は、 図 3 に示すように $[0^{\circ}]_{24}$ とした。CFRP プリプレグ シートを 12 層重ねたところで、厚さ 25µm のポ リイミドフィルムを図 3 のように挿入し、さらに 12 層重ね合わせた。重ね合わせた 24 層の CFRP プリプレグシートに対し、130 °C、90 min、0.2 MPa の条件でホットプレスし、全長 130 mm、幅 20 mm で切り出したのち、両側面をエメリー紙で 研磨後、バフ研磨を施した。

2.3.2 試験方法

本試験の準備として、図4に示すように、蝶番 型治具 2 個をポリイミドフィルム挿入部分に対 し、エポキシ系接着剤で接着させた。次に、この 蝶番治具を万能試験機つかみ具に固定し、鉛直方 向にクロスヘッド速度 1mm/min の引張荷重を与 えた。また、図4に示す位置にAEセンサを取り 付け、AE信号を計測した。AEセンサおよびAE の計測システムの計測条件は、CFRP クロスプラ イ積層板引張試験時と同様とした。

2.3.3 時間周波数解析とクラスタリング

DCB試験で測定したAE信号について時間周波 数解析および解析結果のクラスタリングを行った。 時間周波数解析においてはこれまでの試験と同様、 Wavelet変換法を用いた。また、この時間周波数 解析結果に対し、機械学習によるクラスタリング 手法k-means++法を用いて、クラスタリングをお こない、時間周波数解析で画像化したAE信号を 分類した。クラス数についてはシルエット分析法 を用いて3クラス分類が適切であると決定し、ク ラスタリングを実施した。

2.3.4 位置評定

DCB試験実施に発生したAE信号に対し、位置 評定も行い、試験経過とともに試験片のどの位置 でAE信号が多く発生しているかについて調べた。 DCB試験の場合においては試験終了まで位置評 定を行った。

発生したAE信号の時間周波数解析結果および クラスタリング結果と位置評定結果の相関を調べた。

2.3.5 クラスタリング結果と損傷状況の相関

実際の試験片破面について電子顕微鏡による観 察をおこない、実際の損傷状況を把握した。

また、前節で実施した、AE信号の時間周波数 解析結果・クラスタリング結果や、位置評定結果 と、実際の破面観察から明らかになった損傷状況 との相関について検討した。

2.4 判別モデル作成

これまでのクロスプライ積層板引張試験・炭素 繊維単体試験・DCB試験で得られた測定結果に ついて整理し、解析結果の表示方法やクラスタリ ング手法などの改良を行った。そのうえで、時間 周波数解析結果の画像データをAlexnetによるニ ューラルネットワークに学習させることにより、 AE信号の時間周波数解析結果を各損傷モードに 分類する判別モデルを作成した。判別結果につい て、その適切性を検証した。

3 結果及び考察

3.1 クロスプライ積層板引張試験結果

図5にクロスプライ積層板の引張試験結果を示 す。本試験はAE信号発生時に試験を中断し、位 置評定・内部損傷観察を行った。横軸には試験時 間を、左の縦軸に応力、右の縦軸にAE振幅を示 す。

また AE 信号の時間周波数解析を実施した結果 を図 6 に示す。さらに図 5 の①~③で示された信 号について時間周波数解析した結果が図 6 の①~ ③に対応している。

図 6 AE 信号の時間周波数解析結果

図 6 の時間周波数解析結果においては、①に示 される AE 信号は周波数が 100kHz 以下の比較的 低周波でかつ波形持続時間の長い信号が観察され た。このような特徴をもつ信号は樹脂割れに起因 するものと推察される(昨年度研究報告)。一 方、②に示される AE 信号は周波数が 600kHz~ 1000kHz 程度の比較的高周波でかつ、波形持続時 間が短いものであった。この信号の原因を特定す るため、この信号の発生した箇所について位置評 定を行い、内部損傷状況の観察結果を図 7 に示 す。

図 7 内部損傷状況観察結果

内部の損傷状況観察結果では、繊維破断が多く 観察された。このようなことから周波数 600kHz ~1000kHz の高周波数帯の波形持続時間の短い AE 信号は繊維破断に起因するものではないかと 推定される。

3.1 炭素繊維単体試験結果

図 8 に炭素繊維の単体引張試験結果、図 9 に は、この試験で計測された AE 信号の時間周波数 解析結果を示す。ここでも時間周波数解析手法は Wavelet 変換法を用いた。

この結果、炭素繊維単体の引張試験において周 波数 600kHz~1000kHz の高周波数帯の波形持続 時間の短い AE 信号が多く計測されたことから、 これらの信号は炭素繊維に起因することが示唆さ れた。

図 9 炭素繊維 時間周波数解析結果

3.3 DCB 試験結果

図 10 に DCB 試験の試験結果を示す。またこの 試験実施中に試験片側面において挿入したポリイ ミドフィルムからき裂が進行していく様子が観察 された。この試験片側面観察結果から、試験片が 試験開始後 412 秒でき裂が発生し、その後き裂の 進展していく様子が確認された。また、試験開始 後 812 秒経過後には、上下の分裂した試験片側面 に層間剝離が見られ、上下に分かれた試験片の間 に剥離した繊維を観察された。

図 10 DCB 試験結果 · 断面観察結果

挿入したポリイミドフィルムと試験片間から発 生した AE 信号を除去するため、き裂進展した 後、つまり試験開始後 412 秒以降の AE 信号につ いて考察するものとした。

計測された AE 信号について Wavelet 変換法に よる時間周波数解析をおこない、その結果を kmeans++法によるクラスタリングを行った。 その結果を図 11 に示す。

この結果、AE 信号計測結果の時間周波数解析 結果画像 14966 枚のうち、クラス1に分類された ものが 3197 枚、クラス 2 に分類されたものが 5870 枚、クラス 3 に分類されたものが 5899 枚と なった。

埼玉県産業技術総合センター研究報告 第20巻 (2022)

図 11 DCB 試験 時間周波数解析および k-means++法によるクラスタリング結果

また、これらのクラスで分類された AE 信号の 発生箇所について時系列で位置評定した結果を図 12 に示す。この図は、クラス1に分類された AE 信号が、試験開始直後において多く発生し、試験 後半においてはほとんど発生しなかったことを示 唆している。一方、クラス2およびクラス3に分 類された AE 信号は、試験中継続して計測され た。

さらに、DCB 試験片の破面観察をおこない、 DCB 試験片のき裂表面において、どのような損 傷が発生していたかについて観察した。

-5-

界面別需 15,0x/ x500 50,μm **超語書れ** SEM SAITEG.

破面観察箇所 2
図 14 破面観察結果

図 14 に破面観察結果を示す。ポリイミドフィ ルム周辺では界面剥離と樹脂割れが多く観察され ていたが、き裂進展が進むにつれて破面内に樹脂 割れが多く観察された。一方、DCB 試験片破面 を目視で観察したところ一様に樹脂が試験片から 外れ切断されている様子が観察された。この結果 は樹脂割れと繊維破断は試験終了まで多く発生し たことを示唆している。そこで樹脂割れ、繊維破 断がクラス2またはクラス3と推定されるが、こ れまでの炭素繊維単体試験等の結果から高周波域 に強信号をもつクラス3が繊維破断であると推定 される。この結果、クラス1でクラスタリングさ れた損傷は界面剥離、クラス2でクラスタリング された損傷は樹脂割れ、クラス3でクラスタリン グされた損傷は繊維破断と推定することができ た。

3.4 判別モデル作成

クロスプライ積層板の引張試験による AE 信号 計測結果について、時間周波数解析を実施し、解 析結果の画像を得た。この画像に対し、これまで

埼玉県産業技術総合センター研究報告 第20巻(2022)

明らかにしてきた界面剥離、繊維破断、樹脂割れ の3つの各損傷モードに加え、複合的な損傷の発 生を考慮に入れた計4クラスによるクラスタリン グを実施した。図 15 にクラスタリングを実施し た様子を示す。クラス1は繊維破断、クラス3は 樹脂割れ、クラス4は界面剥離と推定できる。

図 15 クロスプライ積層板引張試験 4 クラス クラスタリング結果

そしてこのクラスタリング結果をニューラルネ ットワークに学習させ、判別モデルを作成した。 ニューラルネットワークには既存の AlexNet を使 用した。作成した判別モデルに対し、まったく別 のクロスプライ積層板による引張試験結果につい て、正しく分類するか否かについて検証を行っ た。図 16 に判別モデルによる判別結果を示す。 この結果、この判別モデルで正しく損傷モードを 判別できた正答率は 96.2%となり。損傷の分類を 正しく実施することが可能となった。

4 まとめ

CFRP 破壊モードの分類のため、樹脂割れ・界 面はく離・繊維破断の3つの損傷モードに着目し Wavelet 変換法による時間周波数解析を行った。 また位置評定などにより AE 信号発生箇所を計算 し、推定したしたうえで CFRP 内部において実際 に生じている損傷を観察し。AE 信号の時間周波 数解析結果との相関について考察した。その結 果、樹脂割れ、繊維破断、界面剥離の各損傷モー ドの信号を推定することが可能となった。さらに ニューラルネットワークを用いた判別モデルを作 成し、損傷モードの判別を行った。正答率9割以 上で損傷モードを分類することが可能となった。

参考文献

- 駒井謙治朗、箕島弘二、渋谷豊茂、日本機械
 学会論文集(A編)、56巻528号、p72-79、
 1990
- R. Gutkin, C.J. Green, S. Vangrattanachai, S.T. Pinho, P. Robinson, P.T. Curtis Mechanical Systems and Signal Processing 25 (2011) 1393–1407
- 3) 畠山貴史、坂井建宣、蔭山健介、日本機械学 会関東支部総会・講演会講演論文集 23rd OS0801-0123 2017